Loading…

TOUSLED participates in apical tissue formation during gynoecium development in Arabidopsis

Mutations at the TOUSLED (TSL) protein kinase locus in Arabidopsis cause reduced differentiation of apical gynoecial tissues and eliminate the fusion of the style and septum. TSL expression becomes confined to the developing style by stage 13, where it may promote expansion of tissues. Double mutant...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 1997-03, Vol.9 (3), p.335-353
Main Authors: Roe, J.L. (University of California, Berkeley, CA.), Nemhauser, J.L, Zambryski, P.C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutations at the TOUSLED (TSL) protein kinase locus in Arabidopsis cause reduced differentiation of apical gynoecial tissues and eliminate the fusion of the style and septum. TSL expression becomes confined to the developing style by stage 13, where it may promote expansion of tissues. Double mutant analysis suggests that ETTIN interacts with TSL, possibly by restricting TSL expression to apical regions. TSL, LEUNIG, and PERIANTHIA appear to participate in pathways of redundant function during the development of specific gynoecial tissues. TSL and LEUNIG most likely function in similar pathways during ovule development. TSL acts independently of the function of the organ identity genes AGAMOUS and APETALA2, and it is required for the formation of specific tissues in ectopic carpers. Mutations in TSL, ETTIN, PERIANTHIA, and LEUNIG all affect floral organ number as well as gynoecium morphology. Their respective wild-type loci must therefore play important roles in early floral meristem development during initiation of organ primordia in addition to their functions during regional differentiation within developing gynoecial primordia
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.9.3.335