Loading…

Tag1 is an autonomous transposable element that shows somatic excision in both Arabidopsis and tobacco

Tag1 is a transposable element first identified as an insertion in the CHL1 gene of Arabidopsis. The chl1::Tag1 mutant originated from a plant (ecotype Landsberg erecta) that had been transformed with the maize transposon Activator (Ac), which is distantly related to Tag1. Genomic analysis of untran...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 1997-10, Vol.9 (10), p.1745-1756
Main Authors: Frank, M.J, Liu, D, Tsay, Y.F, Ustach, C, Crawford, N.M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tag1 is a transposable element first identified as an insertion in the CHL1 gene of Arabidopsis. The chl1::Tag1 mutant originated from a plant (ecotype Landsberg erecta) that had been transformed with the maize transposon Activator (Ac), which is distantly related to Tag1. Genomic analysis of untransformed Landsberg erecta plants demonstrated that two identical Tag1 elements are present in the Landsberg erecta genome. To determine what provides transposase function for Tag1 transposition, we examined Tag1 excision in different genetic backgrounds. First, the chl1::Tag1 mutant was backcrossed to untransformed wild-type Arabidopsis plants to remove the Ac element(s) from the genome. F2 progeny that had no Ac elements but still retained Tag1 in the CHL1 gene were identified. Tag1 still excised in these Ac-minus progeny producing CHL1 revertants; therefore, Ac is not required for Tag1 excision. Next, Tag1 was inserted between a cauliflower mosaic virus 35S promoter and a beta-glucuronidase (GUS) marker gene and transformed into tobacco. Transformants showed blue-staining sectors indicative of Tag1 excision. Transgenic tobacco containing a defective Tag1 element, which was constructed in vitro by deleting an internal 1.4-kb EcoRI fragment, did not show blue-staining sectors. We conclude that Tag1 is an autonomous element capable of independent excision. The 35S-GUS::Tag1 construct was then introduced into Arabidopsis. Blue-staining sectors were found in cotyledons, leaves, and roots, showing that Tag1 undergoes somatic excision during vegetative development in its native host
ISSN:1040-4651
1532-298X
DOI:10.1105/tpc.9.10.1745