Loading…

Intravenous anaesthetics inhibit nicotinic acetylcholine receptor‐mediated currents and Ca2+ transients in rat intracardiac ganglion neurons

1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)‐induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura‐2‐loaded neurons, nAChR activation evoked a trans...

Full description

Saved in:
Bibliographic Details
Published in:British journal of pharmacology 2005-01, Vol.144 (1), p.98-107
Main Authors: Weber, Martin, Motin, Leonid, Gaul, Simon, Beker, Friederike, Fink, Rainer H A, Adams, David J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 107
container_issue 1
container_start_page 98
container_title British journal of pharmacology
container_volume 144
creator Weber, Martin
Motin, Leonid
Gaul, Simon
Beker, Friederike
Fink, Rainer H A
Adams, David J
description 1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)‐induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura‐2‐loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half‐maximal concentration for thiopental inhibition of nAChR‐induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half‐maximal) effective concentration) of thiopental. 3 In fura‐2‐loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage‐gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR‐induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR‐induced peak current amplitudes in dialysed whole‐cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR‐induced increases in [Ca2+]i by ∼40%. 5 Thiopental (25 μM) did not inhibit caffeine‐, muscarine‐ or ATP‐evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol‐1,4,5‐trisphosphate receptor channels is unlikely. 6 Depolarization‐activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). 7 In conclusion, i.v. anaesthetics inhibit nAChR‐induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. British Journal of Pharmacology (2005) 144, 98–107. doi:10.1038/sj.bjp.0705942
doi_str_mv 10.1038/sj.bjp.0705942
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1575970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67365596</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3356-ab06156aab4ed39b54c801d2cf492b60169dfa71d51c355a18ced0cbe1143b453</originalsourceid><addsrcrecordid>eNpdksuKFDEUhoMoTju6dSlB0I1Um1RuVZsBbdQZGNCFrsOpVLo7RXVSJqmR3s0TDD6jT2LaaR11kwPnfPn5zwWhp5QsKWHN6zQsu2FaEkVEy-t7aEG5kpVgDb2PFoQQVVHaNCfoUUoDIaWoxEN0QoXkvFFsgW4ufI5wZX2YEwYPNuWtzc4k7PzWdS5j70zIrrwYjM370WzD6LzF0Ro75RB_XH_f2d5Btj02c4zW54NSj1dQv8JF3Cf3K-c8jpBLKDkDsXwxeAN-M7rgsbdzDD49Rg_WMCb75BhP0Zf37z6vzqvLjx8uVm8uq4kxISvoiCw9AHTc9qztBDcNoX1t1rytO0mobPs1KNoLapgQQBtje2I6SylnHRfsFJ3d6k5zV9wbezA16im6HcS9DuD0vxXvtnoTrjQVSrSKFIGXR4EYvs5lanrnkrHjCN6WUWqpmBSilQV8_h84hDn60pyuqaItZ6It0LO_7fzx8XtPBXhxBCAZGNdlqsalO07y0r_khWO33Dc32v1dnejDteg06HIt-ngt-u2n81oWjz8BxTC4NQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217194359</pqid></control><display><type>article</type><title>Intravenous anaesthetics inhibit nicotinic acetylcholine receptor‐mediated currents and Ca2+ transients in rat intracardiac ganglion neurons</title><source>Open Access: PubMed Central</source><source>Wiley</source><creator>Weber, Martin ; Motin, Leonid ; Gaul, Simon ; Beker, Friederike ; Fink, Rainer H A ; Adams, David J</creator><creatorcontrib>Weber, Martin ; Motin, Leonid ; Gaul, Simon ; Beker, Friederike ; Fink, Rainer H A ; Adams, David J</creatorcontrib><description>1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)‐induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura‐2‐loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half‐maximal concentration for thiopental inhibition of nAChR‐induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half‐maximal) effective concentration) of thiopental. 3 In fura‐2‐loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage‐gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR‐induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR‐induced peak current amplitudes in dialysed whole‐cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR‐induced increases in [Ca2+]i by ∼40%. 5 Thiopental (25 μM) did not inhibit caffeine‐, muscarine‐ or ATP‐evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol‐1,4,5‐trisphosphate receptor channels is unlikely. 6 Depolarization‐activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). 7 In conclusion, i.v. anaesthetics inhibit nAChR‐induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. British Journal of Pharmacology (2005) 144, 98–107. doi:10.1038/sj.bjp.0705942</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0705942</identifier><identifier>PMID: 15644873</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcholine - pharmacology ; Anesthetics, Dissociative - pharmacology ; Anesthetics, Intravenous - pharmacology ; Animals ; Animals, Newborn ; Barbiturates - pharmacology ; Biological and medical sciences ; caffeine ; Calcium - metabolism ; Cells, Cultured ; Electric Conductivity ; Fluorescent Dyes ; Fura-2 ; Ganglia, Parasympathetic - cytology ; Ganglia, Parasympathetic - metabolism ; Ganglia, Parasympathetic - physiology ; ganglionic transmission ; Heart - innervation ; Intracardiac ganglia ; intracellular Ca2 ; intravenous anaesthetics ; ketamine ; Ketamine - pharmacology ; Medical sciences ; Neurons - drug effects ; Neurons - metabolism ; Neurons - physiology ; nicotinic acetylcholine receptor ; Patch-Clamp Techniques ; pentobarbital ; Pentobarbital - pharmacology ; Pharmacology. Drug treatments ; Rats ; Rats, Wistar ; Receptors, Nicotinic - drug effects ; Receptors, Nicotinic - physiology ; thiopental ; Thiopental - pharmacology</subject><ispartof>British journal of pharmacology, 2005-01, Vol.144 (1), p.98-107</ispartof><rights>2005 British Pharmacological Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Jan 2005</rights><rights>Copyright 2005, Nature Publishing Group 2005 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1575970/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1575970/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16480164$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15644873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, Martin</creatorcontrib><creatorcontrib>Motin, Leonid</creatorcontrib><creatorcontrib>Gaul, Simon</creatorcontrib><creatorcontrib>Beker, Friederike</creatorcontrib><creatorcontrib>Fink, Rainer H A</creatorcontrib><creatorcontrib>Adams, David J</creatorcontrib><title>Intravenous anaesthetics inhibit nicotinic acetylcholine receptor‐mediated currents and Ca2+ transients in rat intracardiac ganglion neurons</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)‐induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura‐2‐loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half‐maximal concentration for thiopental inhibition of nAChR‐induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half‐maximal) effective concentration) of thiopental. 3 In fura‐2‐loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage‐gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR‐induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR‐induced peak current amplitudes in dialysed whole‐cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR‐induced increases in [Ca2+]i by ∼40%. 5 Thiopental (25 μM) did not inhibit caffeine‐, muscarine‐ or ATP‐evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol‐1,4,5‐trisphosphate receptor channels is unlikely. 6 Depolarization‐activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). 7 In conclusion, i.v. anaesthetics inhibit nAChR‐induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. British Journal of Pharmacology (2005) 144, 98–107. doi:10.1038/sj.bjp.0705942</description><subject>Acetylcholine - pharmacology</subject><subject>Anesthetics, Dissociative - pharmacology</subject><subject>Anesthetics, Intravenous - pharmacology</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Barbiturates - pharmacology</subject><subject>Biological and medical sciences</subject><subject>caffeine</subject><subject>Calcium - metabolism</subject><subject>Cells, Cultured</subject><subject>Electric Conductivity</subject><subject>Fluorescent Dyes</subject><subject>Fura-2</subject><subject>Ganglia, Parasympathetic - cytology</subject><subject>Ganglia, Parasympathetic - metabolism</subject><subject>Ganglia, Parasympathetic - physiology</subject><subject>ganglionic transmission</subject><subject>Heart - innervation</subject><subject>Intracardiac ganglia</subject><subject>intracellular Ca2</subject><subject>intravenous anaesthetics</subject><subject>ketamine</subject><subject>Ketamine - pharmacology</subject><subject>Medical sciences</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - physiology</subject><subject>nicotinic acetylcholine receptor</subject><subject>Patch-Clamp Techniques</subject><subject>pentobarbital</subject><subject>Pentobarbital - pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Nicotinic - drug effects</subject><subject>Receptors, Nicotinic - physiology</subject><subject>thiopental</subject><subject>Thiopental - pharmacology</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpdksuKFDEUhoMoTju6dSlB0I1Um1RuVZsBbdQZGNCFrsOpVLo7RXVSJqmR3s0TDD6jT2LaaR11kwPnfPn5zwWhp5QsKWHN6zQsu2FaEkVEy-t7aEG5kpVgDb2PFoQQVVHaNCfoUUoDIaWoxEN0QoXkvFFsgW4ufI5wZX2YEwYPNuWtzc4k7PzWdS5j70zIrrwYjM370WzD6LzF0Ro75RB_XH_f2d5Btj02c4zW54NSj1dQv8JF3Cf3K-c8jpBLKDkDsXwxeAN-M7rgsbdzDD49Rg_WMCb75BhP0Zf37z6vzqvLjx8uVm8uq4kxISvoiCw9AHTc9qztBDcNoX1t1rytO0mobPs1KNoLapgQQBtje2I6SylnHRfsFJ3d6k5zV9wbezA16im6HcS9DuD0vxXvtnoTrjQVSrSKFIGXR4EYvs5lanrnkrHjCN6WUWqpmBSilQV8_h84hDn60pyuqaItZ6It0LO_7fzx8XtPBXhxBCAZGNdlqsalO07y0r_khWO33Dc32v1dnejDteg06HIt-ngt-u2n81oWjz8BxTC4NQ</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Weber, Martin</creator><creator>Motin, Leonid</creator><creator>Gaul, Simon</creator><creator>Beker, Friederike</creator><creator>Fink, Rainer H A</creator><creator>Adams, David J</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200501</creationdate><title>Intravenous anaesthetics inhibit nicotinic acetylcholine receptor‐mediated currents and Ca2+ transients in rat intracardiac ganglion neurons</title><author>Weber, Martin ; Motin, Leonid ; Gaul, Simon ; Beker, Friederike ; Fink, Rainer H A ; Adams, David J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3356-ab06156aab4ed39b54c801d2cf492b60169dfa71d51c355a18ced0cbe1143b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Acetylcholine - pharmacology</topic><topic>Anesthetics, Dissociative - pharmacology</topic><topic>Anesthetics, Intravenous - pharmacology</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Barbiturates - pharmacology</topic><topic>Biological and medical sciences</topic><topic>caffeine</topic><topic>Calcium - metabolism</topic><topic>Cells, Cultured</topic><topic>Electric Conductivity</topic><topic>Fluorescent Dyes</topic><topic>Fura-2</topic><topic>Ganglia, Parasympathetic - cytology</topic><topic>Ganglia, Parasympathetic - metabolism</topic><topic>Ganglia, Parasympathetic - physiology</topic><topic>ganglionic transmission</topic><topic>Heart - innervation</topic><topic>Intracardiac ganglia</topic><topic>intracellular Ca2</topic><topic>intravenous anaesthetics</topic><topic>ketamine</topic><topic>Ketamine - pharmacology</topic><topic>Medical sciences</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - physiology</topic><topic>nicotinic acetylcholine receptor</topic><topic>Patch-Clamp Techniques</topic><topic>pentobarbital</topic><topic>Pentobarbital - pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Nicotinic - drug effects</topic><topic>Receptors, Nicotinic - physiology</topic><topic>thiopental</topic><topic>Thiopental - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Martin</creatorcontrib><creatorcontrib>Motin, Leonid</creatorcontrib><creatorcontrib>Gaul, Simon</creatorcontrib><creatorcontrib>Beker, Friederike</creatorcontrib><creatorcontrib>Fink, Rainer H A</creatorcontrib><creatorcontrib>Adams, David J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Martin</au><au>Motin, Leonid</au><au>Gaul, Simon</au><au>Beker, Friederike</au><au>Fink, Rainer H A</au><au>Adams, David J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intravenous anaesthetics inhibit nicotinic acetylcholine receptor‐mediated currents and Ca2+ transients in rat intracardiac ganglion neurons</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>2005-01</date><risdate>2005</risdate><volume>144</volume><issue>1</issue><spage>98</spage><epage>107</epage><pages>98-107</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)‐induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura‐2‐loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half‐maximal concentration for thiopental inhibition of nAChR‐induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half‐maximal) effective concentration) of thiopental. 3 In fura‐2‐loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage‐gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR‐induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR‐induced peak current amplitudes in dialysed whole‐cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR‐induced increases in [Ca2+]i by ∼40%. 5 Thiopental (25 μM) did not inhibit caffeine‐, muscarine‐ or ATP‐evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol‐1,4,5‐trisphosphate receptor channels is unlikely. 6 Depolarization‐activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). 7 In conclusion, i.v. anaesthetics inhibit nAChR‐induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. British Journal of Pharmacology (2005) 144, 98–107. doi:10.1038/sj.bjp.0705942</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>15644873</pmid><doi>10.1038/sj.bjp.0705942</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 2005-01, Vol.144 (1), p.98-107
issn 0007-1188
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1575970
source Open Access: PubMed Central; Wiley
subjects Acetylcholine - pharmacology
Anesthetics, Dissociative - pharmacology
Anesthetics, Intravenous - pharmacology
Animals
Animals, Newborn
Barbiturates - pharmacology
Biological and medical sciences
caffeine
Calcium - metabolism
Cells, Cultured
Electric Conductivity
Fluorescent Dyes
Fura-2
Ganglia, Parasympathetic - cytology
Ganglia, Parasympathetic - metabolism
Ganglia, Parasympathetic - physiology
ganglionic transmission
Heart - innervation
Intracardiac ganglia
intracellular Ca2
intravenous anaesthetics
ketamine
Ketamine - pharmacology
Medical sciences
Neurons - drug effects
Neurons - metabolism
Neurons - physiology
nicotinic acetylcholine receptor
Patch-Clamp Techniques
pentobarbital
Pentobarbital - pharmacology
Pharmacology. Drug treatments
Rats
Rats, Wistar
Receptors, Nicotinic - drug effects
Receptors, Nicotinic - physiology
thiopental
Thiopental - pharmacology
title Intravenous anaesthetics inhibit nicotinic acetylcholine receptor‐mediated currents and Ca2+ transients in rat intracardiac ganglion neurons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intravenous%20anaesthetics%20inhibit%20nicotinic%20acetylcholine%20receptor%E2%80%90mediated%20currents%20and%20Ca2+%20transients%20in%20rat%20intracardiac%20ganglion%20neurons&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Weber,%20Martin&rft.date=2005-01&rft.volume=144&rft.issue=1&rft.spage=98&rft.epage=107&rft.pages=98-107&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0705942&rft_dat=%3Cproquest_pubme%3E67365596%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3356-ab06156aab4ed39b54c801d2cf492b60169dfa71d51c355a18ced0cbe1143b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217194359&rft_id=info:pmid/15644873&rfr_iscdi=true