Loading…

Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces

We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilizati...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (40), p.14773-14778
Main Authors: Talasaz, AmirAli H., Nemat-Gorgani, Mohsen, Liu, Yang, Ståhl, Patrik, Dutton, Robert W., Ronaghi, Mostafa, Davis, Ronald W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3
cites cdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3
container_end_page 14778
container_issue 40
container_start_page 14773
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Talasaz, AmirAli H.
Nemat-Gorgani, Mohsen
Liu, Yang
Ståhl, Patrik
Dutton, Robert W.
Ronaghi, Mostafa
Davis, Ronald W.
description We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.
doi_str_mv 10.1073/pnas.0605841103
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30050649</jstor_id><sourcerecordid>30050649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</originalsourceid><addsrcrecordid>eNqFks1rFTEUxYMo9lldu1IGF4KLaW8mX5ONoMWPQrEFdWvIJJmaRyZ5JjOi_vXm-R596qYQbuDkdw83OUHoMYYTDIKcbqIuJ8CB9RRjIHfQCoPELacS7qIVQCfannb0CD0oZQ0AkvVwHx1hAYAB-Ap9ucrOejP7FJs0Nlc5zc7H5jJ7F2f9R142tZxPUxp88L92Wl2vfQrp2hsdGh1t8yHF4aB8XPKojSsP0b1Rh-Ie7fdj9Pntm09n79uLy3fnZ68uWsMIzK0grs5KO0PcKIgYreiEoM4wYRnljEtL6UCAsp4RLFnnQI54kNaKWnpqyTF6ufPdLMPkrKnDZx3UJvtJ558qaa_-PYn-q7pO3xVmgneSVYPne4Ocvi2uzGryxbgQdHRpKYr3suMMk1tBLCknnG8dn_0HrtOSY30F1QEmPeZcVOh0B5mcSsluvBkZg9omrLYJq0PCtePp3zc98PtIK_BiD2w7D3ZE0WpJRfUclxBm92OubHMLW5EnO2Rd5pRvGALAoH4z8hsstMR3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201381667</pqid></control><display><type>article</type><title>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</title><source>PMC (PubMed Central)</source><source>JSTOR Archival Journals</source><creator>Talasaz, AmirAli H. ; Nemat-Gorgani, Mohsen ; Liu, Yang ; Ståhl, Patrik ; Dutton, Robert W. ; Ronaghi, Mostafa ; Davis, Ronald W.</creator><creatorcontrib>Talasaz, AmirAli H. ; Nemat-Gorgani, Mohsen ; Liu, Yang ; Ståhl, Patrik ; Dutton, Robert W. ; Ronaghi, Mostafa ; Davis, Ronald W.</creatorcontrib><description>We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0605841103</identifier><identifier>PMID: 17001006</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Computer Simulation ; Creatine Kinase, Mitochondrial Form - chemistry ; Creatine Kinase, Mitochondrial Form - metabolism ; Cytochromes ; Cytochromes c - metabolism ; Electric fields ; Electrostatics ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Free energy ; Hexokinase - chemistry ; Hexokinase - metabolism ; Mitochondrial membranes ; Mitochondrial Membranes - metabolism ; Models, Biological ; Models, Molecular ; Molecular interactions ; Molecules ; P branes ; Physical Sciences ; Proteins ; Research methodology ; Sarcomeres - enzymology ; Simulation ; Static Electricity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (40), p.14773-14778</ispartof><rights>Copyright 2006 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 3, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</citedby><cites>FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30050649$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30050649$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17001006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Talasaz, AmirAli H.</creatorcontrib><creatorcontrib>Nemat-Gorgani, Mohsen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ståhl, Patrik</creatorcontrib><creatorcontrib>Dutton, Robert W.</creatorcontrib><creatorcontrib>Ronaghi, Mostafa</creatorcontrib><creatorcontrib>Davis, Ronald W.</creatorcontrib><title>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Creatine Kinase, Mitochondrial Form - chemistry</subject><subject>Creatine Kinase, Mitochondrial Form - metabolism</subject><subject>Cytochromes</subject><subject>Cytochromes c - metabolism</subject><subject>Electric fields</subject><subject>Electrostatics</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Free energy</subject><subject>Hexokinase - chemistry</subject><subject>Hexokinase - metabolism</subject><subject>Mitochondrial membranes</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular interactions</subject><subject>Molecules</subject><subject>P branes</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Research methodology</subject><subject>Sarcomeres - enzymology</subject><subject>Simulation</subject><subject>Static Electricity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFks1rFTEUxYMo9lldu1IGF4KLaW8mX5ONoMWPQrEFdWvIJJmaRyZ5JjOi_vXm-R596qYQbuDkdw83OUHoMYYTDIKcbqIuJ8CB9RRjIHfQCoPELacS7qIVQCfannb0CD0oZQ0AkvVwHx1hAYAB-Ap9ucrOejP7FJs0Nlc5zc7H5jJ7F2f9R142tZxPUxp88L92Wl2vfQrp2hsdGh1t8yHF4aB8XPKojSsP0b1Rh-Ie7fdj9Pntm09n79uLy3fnZ68uWsMIzK0grs5KO0PcKIgYreiEoM4wYRnljEtL6UCAsp4RLFnnQI54kNaKWnpqyTF6ufPdLMPkrKnDZx3UJvtJ558qaa_-PYn-q7pO3xVmgneSVYPne4Ocvi2uzGryxbgQdHRpKYr3suMMk1tBLCknnG8dn_0HrtOSY30F1QEmPeZcVOh0B5mcSsluvBkZg9omrLYJq0PCtePp3zc98PtIK_BiD2w7D3ZE0WpJRfUclxBm92OubHMLW5EnO2Rd5pRvGALAoH4z8hsstMR3</recordid><startdate>20061003</startdate><enddate>20061003</enddate><creator>Talasaz, AmirAli H.</creator><creator>Nemat-Gorgani, Mohsen</creator><creator>Liu, Yang</creator><creator>Ståhl, Patrik</creator><creator>Dutton, Robert W.</creator><creator>Ronaghi, Mostafa</creator><creator>Davis, Ronald W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061003</creationdate><title>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</title><author>Talasaz, AmirAli H. ; Nemat-Gorgani, Mohsen ; Liu, Yang ; Ståhl, Patrik ; Dutton, Robert W. ; Ronaghi, Mostafa ; Davis, Ronald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Creatine Kinase, Mitochondrial Form - chemistry</topic><topic>Creatine Kinase, Mitochondrial Form - metabolism</topic><topic>Cytochromes</topic><topic>Cytochromes c - metabolism</topic><topic>Electric fields</topic><topic>Electrostatics</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Free energy</topic><topic>Hexokinase - chemistry</topic><topic>Hexokinase - metabolism</topic><topic>Mitochondrial membranes</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular interactions</topic><topic>Molecules</topic><topic>P branes</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Research methodology</topic><topic>Sarcomeres - enzymology</topic><topic>Simulation</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talasaz, AmirAli H.</creatorcontrib><creatorcontrib>Nemat-Gorgani, Mohsen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ståhl, Patrik</creatorcontrib><creatorcontrib>Dutton, Robert W.</creatorcontrib><creatorcontrib>Ronaghi, Mostafa</creatorcontrib><creatorcontrib>Davis, Ronald W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talasaz, AmirAli H.</au><au>Nemat-Gorgani, Mohsen</au><au>Liu, Yang</au><au>Ståhl, Patrik</au><au>Dutton, Robert W.</au><au>Ronaghi, Mostafa</au><au>Davis, Ronald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-10-03</date><risdate>2006</risdate><volume>103</volume><issue>40</issue><spage>14773</spage><epage>14778</epage><pages>14773-14778</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17001006</pmid><doi>10.1073/pnas.0605841103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (40), p.14773-14778
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576295
source PMC (PubMed Central); JSTOR Archival Journals
subjects Animals
Biological Sciences
Computer Simulation
Creatine Kinase, Mitochondrial Form - chemistry
Creatine Kinase, Mitochondrial Form - metabolism
Cytochromes
Cytochromes c - metabolism
Electric fields
Electrostatics
Enzymes
Enzymes, Immobilized - chemistry
Enzymes, Immobilized - metabolism
Free energy
Hexokinase - chemistry
Hexokinase - metabolism
Mitochondrial membranes
Mitochondrial Membranes - metabolism
Models, Biological
Models, Molecular
Molecular interactions
Molecules
P branes
Physical Sciences
Proteins
Research methodology
Sarcomeres - enzymology
Simulation
Static Electricity
title Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Protein%20Orientation%20upon%20Immobilization%20on%20Biological%20and%20Nonbiological%20Surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Talasaz,%20AmirAli%20H.&rft.date=2006-10-03&rft.volume=103&rft.issue=40&rft.spage=14773&rft.epage=14778&rft.pages=14773-14778&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0605841103&rft_dat=%3Cjstor_pubme%3E30050649%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201381667&rft_id=info:pmid/17001006&rft_jstor_id=30050649&rfr_iscdi=true