Loading…
Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces
We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilizati...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (40), p.14773-14778 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3 |
container_end_page | 14778 |
container_issue | 40 |
container_start_page | 14773 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Talasaz, AmirAli H. Nemat-Gorgani, Mohsen Liu, Yang Ståhl, Patrik Dutton, Robert W. Ronaghi, Mostafa Davis, Ronald W. |
description | We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined. |
doi_str_mv | 10.1073/pnas.0605841103 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30050649</jstor_id><sourcerecordid>30050649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</originalsourceid><addsrcrecordid>eNqFks1rFTEUxYMo9lldu1IGF4KLaW8mX5ONoMWPQrEFdWvIJJmaRyZ5JjOi_vXm-R596qYQbuDkdw83OUHoMYYTDIKcbqIuJ8CB9RRjIHfQCoPELacS7qIVQCfannb0CD0oZQ0AkvVwHx1hAYAB-Ap9ucrOejP7FJs0Nlc5zc7H5jJ7F2f9R142tZxPUxp88L92Wl2vfQrp2hsdGh1t8yHF4aB8XPKojSsP0b1Rh-Ie7fdj9Pntm09n79uLy3fnZ68uWsMIzK0grs5KO0PcKIgYreiEoM4wYRnljEtL6UCAsp4RLFnnQI54kNaKWnpqyTF6ufPdLMPkrKnDZx3UJvtJ558qaa_-PYn-q7pO3xVmgneSVYPne4Ocvi2uzGryxbgQdHRpKYr3suMMk1tBLCknnG8dn_0HrtOSY30F1QEmPeZcVOh0B5mcSsluvBkZg9omrLYJq0PCtePp3zc98PtIK_BiD2w7D3ZE0WpJRfUclxBm92OubHMLW5EnO2Rd5pRvGALAoH4z8hsstMR3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201381667</pqid></control><display><type>article</type><title>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</title><source>PMC (PubMed Central)</source><source>JSTOR Archival Journals</source><creator>Talasaz, AmirAli H. ; Nemat-Gorgani, Mohsen ; Liu, Yang ; Ståhl, Patrik ; Dutton, Robert W. ; Ronaghi, Mostafa ; Davis, Ronald W.</creator><creatorcontrib>Talasaz, AmirAli H. ; Nemat-Gorgani, Mohsen ; Liu, Yang ; Ståhl, Patrik ; Dutton, Robert W. ; Ronaghi, Mostafa ; Davis, Ronald W.</creatorcontrib><description>We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0605841103</identifier><identifier>PMID: 17001006</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Computer Simulation ; Creatine Kinase, Mitochondrial Form - chemistry ; Creatine Kinase, Mitochondrial Form - metabolism ; Cytochromes ; Cytochromes c - metabolism ; Electric fields ; Electrostatics ; Enzymes ; Enzymes, Immobilized - chemistry ; Enzymes, Immobilized - metabolism ; Free energy ; Hexokinase - chemistry ; Hexokinase - metabolism ; Mitochondrial membranes ; Mitochondrial Membranes - metabolism ; Models, Biological ; Models, Molecular ; Molecular interactions ; Molecules ; P branes ; Physical Sciences ; Proteins ; Research methodology ; Sarcomeres - enzymology ; Simulation ; Static Electricity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (40), p.14773-14778</ispartof><rights>Copyright 2006 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 3, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</citedby><cites>FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30050649$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30050649$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17001006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Talasaz, AmirAli H.</creatorcontrib><creatorcontrib>Nemat-Gorgani, Mohsen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ståhl, Patrik</creatorcontrib><creatorcontrib>Dutton, Robert W.</creatorcontrib><creatorcontrib>Ronaghi, Mostafa</creatorcontrib><creatorcontrib>Davis, Ronald W.</creatorcontrib><title>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Computer Simulation</subject><subject>Creatine Kinase, Mitochondrial Form - chemistry</subject><subject>Creatine Kinase, Mitochondrial Form - metabolism</subject><subject>Cytochromes</subject><subject>Cytochromes c - metabolism</subject><subject>Electric fields</subject><subject>Electrostatics</subject><subject>Enzymes</subject><subject>Enzymes, Immobilized - chemistry</subject><subject>Enzymes, Immobilized - metabolism</subject><subject>Free energy</subject><subject>Hexokinase - chemistry</subject><subject>Hexokinase - metabolism</subject><subject>Mitochondrial membranes</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular interactions</subject><subject>Molecules</subject><subject>P branes</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Research methodology</subject><subject>Sarcomeres - enzymology</subject><subject>Simulation</subject><subject>Static Electricity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFks1rFTEUxYMo9lldu1IGF4KLaW8mX5ONoMWPQrEFdWvIJJmaRyZ5JjOi_vXm-R596qYQbuDkdw83OUHoMYYTDIKcbqIuJ8CB9RRjIHfQCoPELacS7qIVQCfannb0CD0oZQ0AkvVwHx1hAYAB-Ap9ucrOejP7FJs0Nlc5zc7H5jJ7F2f9R142tZxPUxp88L92Wl2vfQrp2hsdGh1t8yHF4aB8XPKojSsP0b1Rh-Ie7fdj9Pntm09n79uLy3fnZ68uWsMIzK0grs5KO0PcKIgYreiEoM4wYRnljEtL6UCAsp4RLFnnQI54kNaKWnpqyTF6ufPdLMPkrKnDZx3UJvtJ558qaa_-PYn-q7pO3xVmgneSVYPne4Ocvi2uzGryxbgQdHRpKYr3suMMk1tBLCknnG8dn_0HrtOSY30F1QEmPeZcVOh0B5mcSsluvBkZg9omrLYJq0PCtePp3zc98PtIK_BiD2w7D3ZE0WpJRfUclxBm92OubHMLW5EnO2Rd5pRvGALAoH4z8hsstMR3</recordid><startdate>20061003</startdate><enddate>20061003</enddate><creator>Talasaz, AmirAli H.</creator><creator>Nemat-Gorgani, Mohsen</creator><creator>Liu, Yang</creator><creator>Ståhl, Patrik</creator><creator>Dutton, Robert W.</creator><creator>Ronaghi, Mostafa</creator><creator>Davis, Ronald W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061003</creationdate><title>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</title><author>Talasaz, AmirAli H. ; Nemat-Gorgani, Mohsen ; Liu, Yang ; Ståhl, Patrik ; Dutton, Robert W. ; Ronaghi, Mostafa ; Davis, Ronald W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Computer Simulation</topic><topic>Creatine Kinase, Mitochondrial Form - chemistry</topic><topic>Creatine Kinase, Mitochondrial Form - metabolism</topic><topic>Cytochromes</topic><topic>Cytochromes c - metabolism</topic><topic>Electric fields</topic><topic>Electrostatics</topic><topic>Enzymes</topic><topic>Enzymes, Immobilized - chemistry</topic><topic>Enzymes, Immobilized - metabolism</topic><topic>Free energy</topic><topic>Hexokinase - chemistry</topic><topic>Hexokinase - metabolism</topic><topic>Mitochondrial membranes</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular interactions</topic><topic>Molecules</topic><topic>P branes</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Research methodology</topic><topic>Sarcomeres - enzymology</topic><topic>Simulation</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talasaz, AmirAli H.</creatorcontrib><creatorcontrib>Nemat-Gorgani, Mohsen</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Ståhl, Patrik</creatorcontrib><creatorcontrib>Dutton, Robert W.</creatorcontrib><creatorcontrib>Ronaghi, Mostafa</creatorcontrib><creatorcontrib>Davis, Ronald W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talasaz, AmirAli H.</au><au>Nemat-Gorgani, Mohsen</au><au>Liu, Yang</au><au>Ståhl, Patrik</au><au>Dutton, Robert W.</au><au>Ronaghi, Mostafa</au><au>Davis, Ronald W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-10-03</date><risdate>2006</risdate><volume>103</volume><issue>40</issue><spage>14773</spage><epage>14778</epage><pages>14773-14778</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We report on a rapid simulation method for predicting protein orientation on a surface based on electrostatic interactions. New methods for predicting protein immobilization are needed because of the increasing use of biosensors and protein microarrays, two technologies that use protein immobilization onto a solid support, and because the orientation of an immobilized protein is important for its function. The proposed simulation model is based on the premise that the protein interacts with the electric field generated by the surface, and this interaction defines the orientation of attachment. Results of this model are in agreement with experimental observations of immobilization of mitochondrial creatine kinase and type I hexokinase on biological membranes. The advantages of our method are that it can be applied to any protein with a known structure; it does not require modeling of the surface at atomic resolution and can be run relatively quickly on readily available computing resources. Finally, we also propose an orientation of membrane-bound cytochrome c, a protein for which the membrane orientation has not been unequivocally determined.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17001006</pmid><doi>10.1073/pnas.0605841103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (40), p.14773-14778 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1576295 |
source | PMC (PubMed Central); JSTOR Archival Journals |
subjects | Animals Biological Sciences Computer Simulation Creatine Kinase, Mitochondrial Form - chemistry Creatine Kinase, Mitochondrial Form - metabolism Cytochromes Cytochromes c - metabolism Electric fields Electrostatics Enzymes Enzymes, Immobilized - chemistry Enzymes, Immobilized - metabolism Free energy Hexokinase - chemistry Hexokinase - metabolism Mitochondrial membranes Mitochondrial Membranes - metabolism Models, Biological Models, Molecular Molecular interactions Molecules P branes Physical Sciences Proteins Research methodology Sarcomeres - enzymology Simulation Static Electricity |
title | Prediction of Protein Orientation upon Immobilization on Biological and Nonbiological Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Protein%20Orientation%20upon%20Immobilization%20on%20Biological%20and%20Nonbiological%20Surfaces&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Talasaz,%20AmirAli%20H.&rft.date=2006-10-03&rft.volume=103&rft.issue=40&rft.spage=14773&rft.epage=14778&rft.pages=14773-14778&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0605841103&rft_dat=%3Cjstor_pubme%3E30050649%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-73e00242c3ef737fd72774ec57d546569d44b30458531952e09f1b9dd7b9d84d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201381667&rft_id=info:pmid/17001006&rft_jstor_id=30050649&rfr_iscdi=true |