Loading…

Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins

Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature‐sensitive fission yeast mutants. The psf3‐1 m...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2006-10, Vol.25 (19), p.4663-4674
Main Authors: Yabuuchi, Hayato, Yamada, Yoshiki, Uchida, Tomonori, Sunathvanichkul, Tul, Nakagawa, Takuro, Masukata, Hisao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3
cites cdi_FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3
container_end_page 4674
container_issue 19
container_start_page 4663
container_title The EMBO journal
container_volume 25
creator Yabuuchi, Hayato
Yamada, Yoshiki
Uchida, Tomonori
Sunathvanichkul, Tul
Nakagawa, Takuro
Masukata, Hisao
description Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature‐sensitive fission yeast mutants. The psf3‐1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull‐down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7‐Dbf4 kinase (DDK) but not cyclin‐dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.
doi_str_mv 10.1038/sj.emboj.7601347
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1589995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1139401141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3</originalsourceid><addsrcrecordid>eNqFks1v0zAYxiMEYmVw5wKKOOxEih1_xRck6EbZ2AdiQztajvOmOEuTzk4G_e9xSdQOJLSTZT2_5_FrP46ilxhNMSLZO19NYZm31VRwhAkVj6IJphwlKRLscTRBKccJxZnci555XyGEWCbw02gPcymRkOkk6i9cAQ6KWHsfoup13JbxZV2Qt_H8-Pwy1k0RzwpDWWx9XFjf2cZ0gXKw6GvdBWO-jg8PvwxgWMvWxdp09k53tm02aQ5WtTXj1tmFbfzz6Empaw8vxnU_-v7p6Gr2OTm9mB_PPpwmhgskkjRjWGaQMyEJTWlWcqQ5LSWAZFpAJvKc5JkWBSZpWRa54IwWIjVCIAMkN2Q_ej_krvp8CYWBpnO6Vitnl9qtVaut-ltp7A-1aO8UZpmUkoWAgzHAtbc9-E4trTdQ17qBtveKZxILgh8GsaSScboB3_wDVm3vmvAKgWEpZ0zSAKEBMq713kG5HRkjtWle-Ur9aV6NzQfL6_tX3RnGqgMgB-CnrWH9YKA6Ovt4sgvHg9cHW7MAd2_o_w_0avA0uusdbA_c6cmgh08Fv7aydjeKCyKYuj6fq2_X5Gx-coXVV_IbavHmmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195265594</pqid></control><display><type>article</type><title>Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins</title><source>PubMed Central</source><creator>Yabuuchi, Hayato ; Yamada, Yoshiki ; Uchida, Tomonori ; Sunathvanichkul, Tul ; Nakagawa, Takuro ; Masukata, Hisao</creator><creatorcontrib>Yabuuchi, Hayato ; Yamada, Yoshiki ; Uchida, Tomonori ; Sunathvanichkul, Tul ; Nakagawa, Takuro ; Masukata, Hisao</creatorcontrib><description>Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature‐sensitive fission yeast mutants. The psf3‐1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull‐down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7‐Dbf4 kinase (DDK) but not cyclin‐dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601347</identifier><identifier>PMID: 16990792</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>CDK ; cell cycle ; Cell Cycle Proteins - metabolism ; Chromatin ; Chromosomes ; Chromosomes, Fungal - genetics ; Cyclin-Dependent Kinases - metabolism ; DDK ; Deoxyribonucleic acid ; DNA ; DNA replication ; DNA-Binding Proteins - metabolism ; EMBO13 ; GINS ; Kinases ; Models, Genetic ; Molecular biology ; Multiprotein Complexes - metabolism ; Mutants ; Mutation ; Mutation - genetics ; Nuclear Proteins - metabolism ; Protein Transport ; Protein-Serine-Threonine Kinases - metabolism ; Replication Origin - genetics ; S Phase ; Schizosaccharomyces - cytology ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe ; Schizosaccharomyces pombe Proteins - metabolism ; Yeast ; Yeasts</subject><ispartof>The EMBO journal, 2006-10, Vol.25 (19), p.4663-4674</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Oct 4, 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3</citedby><cites>FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1589995/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1589995/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16990792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yabuuchi, Hayato</creatorcontrib><creatorcontrib>Yamada, Yoshiki</creatorcontrib><creatorcontrib>Uchida, Tomonori</creatorcontrib><creatorcontrib>Sunathvanichkul, Tul</creatorcontrib><creatorcontrib>Nakagawa, Takuro</creatorcontrib><creatorcontrib>Masukata, Hisao</creatorcontrib><title>Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature‐sensitive fission yeast mutants. The psf3‐1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull‐down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7‐Dbf4 kinase (DDK) but not cyclin‐dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.</description><subject>CDK</subject><subject>cell cycle</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Chromosomes, Fungal - genetics</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>DDK</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA replication</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>EMBO13</subject><subject>GINS</subject><subject>Kinases</subject><subject>Models, Genetic</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Protein Transport</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Replication Origin - genetics</subject><subject>S Phase</subject><subject>Schizosaccharomyces - cytology</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFks1v0zAYxiMEYmVw5wKKOOxEih1_xRck6EbZ2AdiQztajvOmOEuTzk4G_e9xSdQOJLSTZT2_5_FrP46ilxhNMSLZO19NYZm31VRwhAkVj6IJphwlKRLscTRBKccJxZnci555XyGEWCbw02gPcymRkOkk6i9cAQ6KWHsfoup13JbxZV2Qt_H8-Pwy1k0RzwpDWWx9XFjf2cZ0gXKw6GvdBWO-jg8PvwxgWMvWxdp09k53tm02aQ5WtTXj1tmFbfzz6Empaw8vxnU_-v7p6Gr2OTm9mB_PPpwmhgskkjRjWGaQMyEJTWlWcqQ5LSWAZFpAJvKc5JkWBSZpWRa54IwWIjVCIAMkN2Q_ej_krvp8CYWBpnO6Vitnl9qtVaut-ltp7A-1aO8UZpmUkoWAgzHAtbc9-E4trTdQ17qBtveKZxILgh8GsaSScboB3_wDVm3vmvAKgWEpZ0zSAKEBMq713kG5HRkjtWle-Ur9aV6NzQfL6_tX3RnGqgMgB-CnrWH9YKA6Ovt4sgvHg9cHW7MAd2_o_w_0avA0uusdbA_c6cmgh08Fv7aydjeKCyKYuj6fq2_X5Gx-coXVV_IbavHmmQ</recordid><startdate>20061004</startdate><enddate>20061004</enddate><creator>Yabuuchi, Hayato</creator><creator>Yamada, Yoshiki</creator><creator>Uchida, Tomonori</creator><creator>Sunathvanichkul, Tul</creator><creator>Nakagawa, Takuro</creator><creator>Masukata, Hisao</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061004</creationdate><title>Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins</title><author>Yabuuchi, Hayato ; Yamada, Yoshiki ; Uchida, Tomonori ; Sunathvanichkul, Tul ; Nakagawa, Takuro ; Masukata, Hisao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>CDK</topic><topic>cell cycle</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Chromosomes, Fungal - genetics</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>DDK</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA replication</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>EMBO13</topic><topic>GINS</topic><topic>Kinases</topic><topic>Models, Genetic</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Protein Transport</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Replication Origin - genetics</topic><topic>S Phase</topic><topic>Schizosaccharomyces - cytology</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yabuuchi, Hayato</creatorcontrib><creatorcontrib>Yamada, Yoshiki</creatorcontrib><creatorcontrib>Uchida, Tomonori</creatorcontrib><creatorcontrib>Sunathvanichkul, Tul</creatorcontrib><creatorcontrib>Nakagawa, Takuro</creatorcontrib><creatorcontrib>Masukata, Hisao</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yabuuchi, Hayato</au><au>Yamada, Yoshiki</au><au>Uchida, Tomonori</au><au>Sunathvanichkul, Tul</au><au>Nakagawa, Takuro</au><au>Masukata, Hisao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2006-10-04</date><risdate>2006</risdate><volume>25</volume><issue>19</issue><spage>4663</spage><epage>4674</epage><pages>4663-4674</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Initiation of chromosome DNA replication in eukaryotes is tightly regulated through assembly of replication factors at replication origins. Here, we investigated dependence of the assembly of the initiation complex on particular factors using temperature‐sensitive fission yeast mutants. The psf3‐1 mutant, a GINS component mutant, arrested with unreplicated DNA at the restrictive temperature and the DNA content gradually increased, suggesting a defect in DNA replication. The mutation impaired GINS complex formation, as shown by pull‐down experiments. Chromatin immunoprecipitation assays indicated that GINS integrity was required for origin loading of Psf2, Cut5 and Cdc45, but not Sld3. In contrast, loading of Psf2 onto origins depended on Sld3 and Cut5 but not on Cdc45. These results suggest that Sld3 functions furthest upstream in initiation complex assembly, followed by GINS and Cut5, then Cdc45. Consistent with this conclusion, Cdc7‐Dbf4 kinase (DDK) but not cyclin‐dependent kinase (CDK) was required for Sld3 loading, whereas recruitment of the other factors depended on both kinases. These results suggest that DDK and CDK regulate distinct steps in activation of replication origins in fission yeast.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>16990792</pmid><doi>10.1038/sj.emboj.7601347</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2006-10, Vol.25 (19), p.4663-4674
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1589995
source PubMed Central
subjects CDK
cell cycle
Cell Cycle Proteins - metabolism
Chromatin
Chromosomes
Chromosomes, Fungal - genetics
Cyclin-Dependent Kinases - metabolism
DDK
Deoxyribonucleic acid
DNA
DNA replication
DNA-Binding Proteins - metabolism
EMBO13
GINS
Kinases
Models, Genetic
Molecular biology
Multiprotein Complexes - metabolism
Mutants
Mutation
Mutation - genetics
Nuclear Proteins - metabolism
Protein Transport
Protein-Serine-Threonine Kinases - metabolism
Replication Origin - genetics
S Phase
Schizosaccharomyces - cytology
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe
Schizosaccharomyces pombe Proteins - metabolism
Yeast
Yeasts
title Ordered assembly of Sld3, GINS and Cdc45 is distinctly regulated by DDK and CDK for activation of replication origins
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ordered%20assembly%20of%20Sld3,%20GINS%20and%20Cdc45%20is%20distinctly%20regulated%20by%20DDK%20and%20CDK%20for%20activation%20of%20replication%20origins&rft.jtitle=The%20EMBO%20journal&rft.au=Yabuuchi,%20Hayato&rft.date=2006-10-04&rft.volume=25&rft.issue=19&rft.spage=4663&rft.epage=4674&rft.pages=4663-4674&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601347&rft_dat=%3Cproquest_pubme%3E1139401141%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6707-285198eb57934248f60a64f9ee95a7e87bb3b8a7d132ffdb7654d72c770ce3bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195265594&rft_id=info:pmid/16990792&rfr_iscdi=true