Loading…

Water Relation Alterations Observed during Hypersensitive Reaction Induced by Bacteria

Upon exposure to pathogenic bacteria, resistant and nonhost plants undergo a hypersensitive reaction (HR) that is expressed as rapid plant cell death. If sufficient concentrations of these bacteria are inoculated to such plant tissue, then that portion of the tissue rapidly collapses and becomes nec...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1993-12, Vol.103 (4), p.1243-1247
Main Authors: Popham, Phillip L., Sharon M. Pike, Novacky, Anton, Pallardy, Stephen G.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Upon exposure to pathogenic bacteria, resistant and nonhost plants undergo a hypersensitive reaction (HR) that is expressed as rapid plant cell death. If sufficient concentrations of these bacteria are inoculated to such plant tissue, then that portion of the tissue rapidly collapses and becomes necrotic. As the tissue collapses the water relations of inoculated tissues become markedly disturbed. We measured a decline in the relative water content (RWC) in the leaf-like cotyledons of cotton (Gossypium hirsutum cv Immune 216) within the first 4 h (cut at 1 h) after inoculation with Pseudomonas syringae pv tabaci. However, the decrease in RWC was not caused by a decrease in initial fresh weight but by increased water uptake during incubation in water. By 8 h after inoculation, cotyledons still on the plant had lost turgidity, and their area decreased. K+ efflux was also observed concurrently with the decrease in RWC, providing a reason for the loss of turgidity in the tissue. These observations suggest that cells lose turgor and change shape from cylinders with large intercellular spaces to those of a more tabular shape. During this change cell walls come closer together, providing an avenue for increased water uptake through capillary action. The stomatal diffusive resistance of intact cotyledons increased; hence, water loss through stomata is not the cause of the observed wilting and RWC decline. An increase in K+ per dry weight suggests that phloem loading or movement may also be impaired during bacterially induced HR.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.103.4.1243