Loading…

Is acetylcarnitine a substrate for fatty acid synthesis in plants?

Long-chain fatty acid synthesis from [1-14C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-14C]acetate irrespective of the maturi...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 1993-04, Vol.101 (4), p.1157-1162
Main Authors: Roughan, G, Post-Beittenmiller, D, Ohlrogge, J, Browse, J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-chain fatty acid synthesis from [1-14C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-14C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-14C]-Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-14C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-14C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-14C]acetylcarnitine and 47 to 57% of the [1-14C]acetate taken up was incorporated into lipids. Most (78-82%) of the [1-14C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.101.4.1157