Loading…
Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes
Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlat...
Saved in:
Published in: | Proceedings of the Royal Society. B, Biological sciences Biological sciences, 1999-10, Vol.266 (1433), p.2053-2059 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393 |
---|---|
cites | cdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393 |
container_end_page | 2059 |
container_issue | 1433 |
container_start_page | 2053 |
container_title | Proceedings of the Royal Society. B, Biological sciences |
container_volume | 266 |
creator | Beaton, Margaret J. Cavalier-Smithf, Thomas |
description | Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not. |
doi_str_mv | 10.1098/rspb.1999.0886 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1690321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>51534</jstor_id><sourcerecordid>51534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEokNhy4IFyopdBj-TmAVqKaUgjQoqUJZW4seMp4kd7GRg-PU4k2rUEaIrL-53zrnXJ0meQzCHgJWvfejqOWSMzUFZ5g-SGSQFzBCj5GEyAyxHWUkoOkqehLAGADBa0sfJUZQCRAmcJfp8uKn81vVGpNbZTDhp7DJ9f3mampDqwYreOFs1b1K1MVJZoVLtXZv2K5VKo7XyyvamatIgqmZUOp0Kv-1610aZTJfKulaFp8kjXTVBPbt9j5PvH86_nX3MFp8vPp2dLjKRM9pntZI5q3JBaoplWSKB6krlkggJsEQI1wArSCBGoIAF00DHAwkDkgJWaIYZPk7eTr7dULdKiricrxreedPGK7mrDD-cWLPiS7fhMGcAIxgNXt0aePdzUKHnrQlCNU1llRsCzxlh489FcD6BwrsQvNL7EAj4WA0fq-FjNXysJgpe3l3tDj51EQE8Ad5t4x85YVS_5Ws3-Pj_4f-24T7V1dcv7yIMNijPDSQYRxWGgFKES_7HdDu7EeAR4CaEQfEddhjzb-qLKXUdeuf3t1BIMYnDbBqa0Kvf-2Hlb3he4ILy65LwH-hiAS-vrjmO_MnEr8xy9ct4xQ9u2UULZ_tY2W7L3X4IUMz10MRypY4W6F4Lt-18qA_V-C89yQPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69492541</pqid></control><display><type>article</type><title>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Beaton, Margaret J. ; Cavalier-Smithf, Thomas</creator><creatorcontrib>Beaton, Margaret J. ; Cavalier-Smithf, Thomas</creatorcontrib><description>Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.1999.0886</identifier><identifier>PMID: 10902541</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Algae ; Animals ; Cell cycle ; Cell nucleus ; Cells ; Cryptomonads ; Cryptophyta ; DNA ; DNA - genetics ; DNA content ; Eukaryotic Cells ; Evolution ; G-Value Paradox ; Genome ; Genome size ; Genomes ; Nuclei ; Nucleomorphs ; Sequence Analysis, DNA ; Skeletal Dna</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 1999-10, Vol.266 (1433), p.2053-2059</ispartof><rights>Copyright 1999 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</citedby><cites>FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/51534$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/51534$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10902541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaton, Margaret J.</creatorcontrib><creatorcontrib>Cavalier-Smithf, Thomas</creatorcontrib><title>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.</description><subject>Algae</subject><subject>Animals</subject><subject>Cell cycle</subject><subject>Cell nucleus</subject><subject>Cells</subject><subject>Cryptomonads</subject><subject>Cryptophyta</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA content</subject><subject>Eukaryotic Cells</subject><subject>Evolution</subject><subject>G-Value Paradox</subject><subject>Genome</subject><subject>Genome size</subject><subject>Genomes</subject><subject>Nuclei</subject><subject>Nucleomorphs</subject><subject>Sequence Analysis, DNA</subject><subject>Skeletal Dna</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhSMEokNhy4IFyopdBj-TmAVqKaUgjQoqUJZW4seMp4kd7GRg-PU4k2rUEaIrL-53zrnXJ0meQzCHgJWvfejqOWSMzUFZ5g-SGSQFzBCj5GEyAyxHWUkoOkqehLAGADBa0sfJUZQCRAmcJfp8uKn81vVGpNbZTDhp7DJ9f3mampDqwYreOFs1b1K1MVJZoVLtXZv2K5VKo7XyyvamatIgqmZUOp0Kv-1610aZTJfKulaFp8kjXTVBPbt9j5PvH86_nX3MFp8vPp2dLjKRM9pntZI5q3JBaoplWSKB6krlkggJsEQI1wArSCBGoIAF00DHAwkDkgJWaIYZPk7eTr7dULdKiricrxreedPGK7mrDD-cWLPiS7fhMGcAIxgNXt0aePdzUKHnrQlCNU1llRsCzxlh489FcD6BwrsQvNL7EAj4WA0fq-FjNXysJgpe3l3tDj51EQE8Ad5t4x85YVS_5Ws3-Pj_4f-24T7V1dcv7yIMNijPDSQYRxWGgFKES_7HdDu7EeAR4CaEQfEddhjzb-qLKXUdeuf3t1BIMYnDbBqa0Kvf-2Hlb3he4ILy65LwH-hiAS-vrjmO_MnEr8xy9ct4xQ9u2UULZ_tY2W7L3X4IUMz10MRypY4W6F4Lt-18qA_V-C89yQPy</recordid><startdate>19991022</startdate><enddate>19991022</enddate><creator>Beaton, Margaret J.</creator><creator>Cavalier-Smithf, Thomas</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991022</creationdate><title>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</title><author>Beaton, Margaret J. ; Cavalier-Smithf, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Cell cycle</topic><topic>Cell nucleus</topic><topic>Cells</topic><topic>Cryptomonads</topic><topic>Cryptophyta</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA content</topic><topic>Eukaryotic Cells</topic><topic>Evolution</topic><topic>G-Value Paradox</topic><topic>Genome</topic><topic>Genome size</topic><topic>Genomes</topic><topic>Nuclei</topic><topic>Nucleomorphs</topic><topic>Sequence Analysis, DNA</topic><topic>Skeletal Dna</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaton, Margaret J.</creatorcontrib><creatorcontrib>Cavalier-Smithf, Thomas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaton, Margaret J.</au><au>Cavalier-Smithf, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>1999-10-22</date><risdate>1999</risdate><volume>266</volume><issue>1433</issue><spage>2053</spage><epage>2059</epage><pages>2053-2059</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>10902541</pmid><doi>10.1098/rspb.1999.0886</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-8452 |
ispartof | Proceedings of the Royal Society. B, Biological sciences, 1999-10, Vol.266 (1433), p.2053-2059 |
issn | 0962-8452 1471-2954 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1690321 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Algae Animals Cell cycle Cell nucleus Cells Cryptomonads Cryptophyta DNA DNA - genetics DNA content Eukaryotic Cells Evolution G-Value Paradox Genome Genome size Genomes Nuclei Nucleomorphs Sequence Analysis, DNA Skeletal Dna |
title | Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eukaryotic%20non-coding%20DNA%20is%20functional:%20evidence%20from%20the%20differential%20scaling%20of%20cryptomonad%20genomes&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Beaton,%20Margaret%20J.&rft.date=1999-10-22&rft.volume=266&rft.issue=1433&rft.spage=2053&rft.epage=2059&rft.pages=2053-2059&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.1999.0886&rft_dat=%3Cjstor_pubme%3E51534%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69492541&rft_id=info:pmid/10902541&rft_jstor_id=51534&rfr_iscdi=true |