Loading…

Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes

Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlat...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 1999-10, Vol.266 (1433), p.2053-2059
Main Authors: Beaton, Margaret J., Cavalier-Smithf, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393
cites cdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393
container_end_page 2059
container_issue 1433
container_start_page 2053
container_title Proceedings of the Royal Society. B, Biological sciences
container_volume 266
creator Beaton, Margaret J.
Cavalier-Smithf, Thomas
description Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.
doi_str_mv 10.1098/rspb.1999.0886
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1690321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>51534</jstor_id><sourcerecordid>51534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEokNhy4IFyopdBj-TmAVqKaUgjQoqUJZW4seMp4kd7GRg-PU4k2rUEaIrL-53zrnXJ0meQzCHgJWvfejqOWSMzUFZ5g-SGSQFzBCj5GEyAyxHWUkoOkqehLAGADBa0sfJUZQCRAmcJfp8uKn81vVGpNbZTDhp7DJ9f3mampDqwYreOFs1b1K1MVJZoVLtXZv2K5VKo7XyyvamatIgqmZUOp0Kv-1610aZTJfKulaFp8kjXTVBPbt9j5PvH86_nX3MFp8vPp2dLjKRM9pntZI5q3JBaoplWSKB6krlkggJsEQI1wArSCBGoIAF00DHAwkDkgJWaIYZPk7eTr7dULdKiricrxreedPGK7mrDD-cWLPiS7fhMGcAIxgNXt0aePdzUKHnrQlCNU1llRsCzxlh489FcD6BwrsQvNL7EAj4WA0fq-FjNXysJgpe3l3tDj51EQE8Ad5t4x85YVS_5Ws3-Pj_4f-24T7V1dcv7yIMNijPDSQYRxWGgFKES_7HdDu7EeAR4CaEQfEddhjzb-qLKXUdeuf3t1BIMYnDbBqa0Kvf-2Hlb3he4ILy65LwH-hiAS-vrjmO_MnEr8xy9ct4xQ9u2UULZ_tY2W7L3X4IUMz10MRypY4W6F4Lt-18qA_V-C89yQPy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69492541</pqid></control><display><type>article</type><title>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Beaton, Margaret J. ; Cavalier-Smithf, Thomas</creator><creatorcontrib>Beaton, Margaret J. ; Cavalier-Smithf, Thomas</creatorcontrib><description>Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.</description><identifier>ISSN: 0962-8452</identifier><identifier>EISSN: 1471-2954</identifier><identifier>DOI: 10.1098/rspb.1999.0886</identifier><identifier>PMID: 10902541</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Algae ; Animals ; Cell cycle ; Cell nucleus ; Cells ; Cryptomonads ; Cryptophyta ; DNA ; DNA - genetics ; DNA content ; Eukaryotic Cells ; Evolution ; G-Value Paradox ; Genome ; Genome size ; Genomes ; Nuclei ; Nucleomorphs ; Sequence Analysis, DNA ; Skeletal Dna</subject><ispartof>Proceedings of the Royal Society. B, Biological sciences, 1999-10, Vol.266 (1433), p.2053-2059</ispartof><rights>Copyright 1999 The Royal Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</citedby><cites>FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/51534$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/51534$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10902541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beaton, Margaret J.</creatorcontrib><creatorcontrib>Cavalier-Smithf, Thomas</creatorcontrib><title>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</title><title>Proceedings of the Royal Society. B, Biological sciences</title><addtitle>Proc Biol Sci</addtitle><description>Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.</description><subject>Algae</subject><subject>Animals</subject><subject>Cell cycle</subject><subject>Cell nucleus</subject><subject>Cells</subject><subject>Cryptomonads</subject><subject>Cryptophyta</subject><subject>DNA</subject><subject>DNA - genetics</subject><subject>DNA content</subject><subject>Eukaryotic Cells</subject><subject>Evolution</subject><subject>G-Value Paradox</subject><subject>Genome</subject><subject>Genome size</subject><subject>Genomes</subject><subject>Nuclei</subject><subject>Nucleomorphs</subject><subject>Sequence Analysis, DNA</subject><subject>Skeletal Dna</subject><issn>0962-8452</issn><issn>1471-2954</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1DAUhSMEokNhy4IFyopdBj-TmAVqKaUgjQoqUJZW4seMp4kd7GRg-PU4k2rUEaIrL-53zrnXJ0meQzCHgJWvfejqOWSMzUFZ5g-SGSQFzBCj5GEyAyxHWUkoOkqehLAGADBa0sfJUZQCRAmcJfp8uKn81vVGpNbZTDhp7DJ9f3mampDqwYreOFs1b1K1MVJZoVLtXZv2K5VKo7XyyvamatIgqmZUOp0Kv-1610aZTJfKulaFp8kjXTVBPbt9j5PvH86_nX3MFp8vPp2dLjKRM9pntZI5q3JBaoplWSKB6krlkggJsEQI1wArSCBGoIAF00DHAwkDkgJWaIYZPk7eTr7dULdKiricrxreedPGK7mrDD-cWLPiS7fhMGcAIxgNXt0aePdzUKHnrQlCNU1llRsCzxlh489FcD6BwrsQvNL7EAj4WA0fq-FjNXysJgpe3l3tDj51EQE8Ad5t4x85YVS_5Ws3-Pj_4f-24T7V1dcv7yIMNijPDSQYRxWGgFKES_7HdDu7EeAR4CaEQfEddhjzb-qLKXUdeuf3t1BIMYnDbBqa0Kvf-2Hlb3he4ILy65LwH-hiAS-vrjmO_MnEr8xy9ct4xQ9u2UULZ_tY2W7L3X4IUMz10MRypY4W6F4Lt-18qA_V-C89yQPy</recordid><startdate>19991022</startdate><enddate>19991022</enddate><creator>Beaton, Margaret J.</creator><creator>Cavalier-Smithf, Thomas</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19991022</creationdate><title>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</title><author>Beaton, Margaret J. ; Cavalier-Smithf, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Cell cycle</topic><topic>Cell nucleus</topic><topic>Cells</topic><topic>Cryptomonads</topic><topic>Cryptophyta</topic><topic>DNA</topic><topic>DNA - genetics</topic><topic>DNA content</topic><topic>Eukaryotic Cells</topic><topic>Evolution</topic><topic>G-Value Paradox</topic><topic>Genome</topic><topic>Genome size</topic><topic>Genomes</topic><topic>Nuclei</topic><topic>Nucleomorphs</topic><topic>Sequence Analysis, DNA</topic><topic>Skeletal Dna</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beaton, Margaret J.</creatorcontrib><creatorcontrib>Cavalier-Smithf, Thomas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beaton, Margaret J.</au><au>Cavalier-Smithf, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes</atitle><jtitle>Proceedings of the Royal Society. B, Biological sciences</jtitle><addtitle>Proc Biol Sci</addtitle><date>1999-10-22</date><risdate>1999</risdate><volume>266</volume><issue>1433</issue><spage>2053</spage><epage>2059</epage><pages>2053-2059</pages><issn>0962-8452</issn><eissn>1471-2954</eissn><abstract>Genic DNA functions are commonplace: coding for proteins and specifying non-messenger RNA structure. Yet most DNA in the biosphere is non-genic, existing in nuclei as non-coding or secondary DNA. Why so much secondary DNA exists and why its amount per genome varies over orders of magnitude (correlating positively with cell volume) are central biological problems. A novel perspective on secondary DNA function comes from natural eukaryote-eukaryote chimaeras (cryptomonads and chlorarachneans) where two phylogenetically distinct nuclei have coevolved within one cell for hundreds of millions of years. By comparing cryptomonad species differing 13-fold in cell volume, we show that nuclear and nucleomorph genome sizes obey fundamentally different scaling laws. Following a more than 125-fold reduction in DNA content, nucleomorph genomes exhibit little variation in size. Furthermore, the present lack of significant amounts of nucleomorph secondary DNA confirms that selection can readily eliminate functionless nuclear DNA, refuting 'selfish' and 'junk' theories of secondary DNA. Cryptomonad nuclear DNA content varied 12-fold: as in other eukaryotes, larger cells have extra DNA, which is almost certainly secondary DNA positively selected for a volume-related function. The skeletal DNA theory explains why nuclear genome size increases with cell volume and, using new evidence on nucleomorph gene functions, why nucleomorph genomes do not.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>10902541</pmid><doi>10.1098/rspb.1999.0886</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8452
ispartof Proceedings of the Royal Society. B, Biological sciences, 1999-10, Vol.266 (1433), p.2053-2059
issn 0962-8452
1471-2954
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1690321
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Algae
Animals
Cell cycle
Cell nucleus
Cells
Cryptomonads
Cryptophyta
DNA
DNA - genetics
DNA content
Eukaryotic Cells
Evolution
G-Value Paradox
Genome
Genome size
Genomes
Nuclei
Nucleomorphs
Sequence Analysis, DNA
Skeletal Dna
title Eukaryotic non-coding DNA is functional: evidence from the differential scaling of cryptomonad genomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eukaryotic%20non-coding%20DNA%20is%20functional:%20evidence%20from%20the%20differential%20scaling%20of%20cryptomonad%20genomes&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20B,%20Biological%20sciences&rft.au=Beaton,%20Margaret%20J.&rft.date=1999-10-22&rft.volume=266&rft.issue=1433&rft.spage=2053&rft.epage=2059&rft.pages=2053-2059&rft.issn=0962-8452&rft.eissn=1471-2954&rft_id=info:doi/10.1098/rspb.1999.0886&rft_dat=%3Cjstor_pubme%3E51534%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c695t-bed69a6c4b53d882c2bae6d4cd03d223b03e1413207179f0f962490d5097f9393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69492541&rft_id=info:pmid/10902541&rft_jstor_id=51534&rfr_iscdi=true