Loading…

Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer

Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and...

Full description

Saved in:
Bibliographic Details
Published in:Ultrasonic imaging 2004-07, Vol.26 (3), p.163-172
Main Authors: Feleppa, Ernest J., Porter, Christopher R., Ketterling, Jeffrey, Lee, Paul, Dasgupta, Shreedevi, Urban, Stella, Kalisz, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013
cites cdi_FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013
container_end_page 172
container_issue 3
container_start_page 163
container_title Ultrasonic imaging
container_volume 26
creator Feleppa, Ernest J.
Porter, Christopher R.
Ketterling, Jeffrey
Lee, Paul
Dasgupta, Shreedevi
Urban, Stella
Kalisz, Andrew
description Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.
doi_str_mv 10.1177/016173460402600303
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_016173460402600303</sage_id><sourcerecordid>67265090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJabZp_0AOQZeU9uBmZMmSfQmE7ddCSkNxz0LrHW0UbGkj2YH8-8rs0rQEepE00jPv6J0h5JTBR8aUugAmmeJCgoBSAnDgL8iCQSMLaBgckcUMFDNxTF6ndAfAmBTqFTlmlaqEatSCuJ_YoR_pJ3zAPuyGfE7Uedq6lCYs2scd0tVgts5v6fu2XX2gNkR60xvv5yvjN_R78G4McQ7biGacNWiw9CaGNJoR6dL4DuMb8tKaPuHbw35Cfn353C6_Fdc_vq6WV9dFV3E5Fg0XtVRs3dg6Lybb4szW2JiNFLwUwpacS17WIOuyEmJdgZDIFFadVWoNjJ-Qy73ubloPuJndRdPrXXSDiY86GKf_ffHuVm_Dg2Yy11Z1Fnh3EIjhfsI06sGlDvvsGcOUtFSlrKCBDJZ7sMtOU0T7pwgDPU9IP59QTjr7-3tPKYeRZOD8AJjUmd7G3D2XnjhZ1Q3jInMXey6ZLeq7MEWf2_q_0r8BxoilLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67265090</pqid></control><display><type>article</type><title>Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer</title><source>SAGE</source><creator>Feleppa, Ernest J. ; Porter, Christopher R. ; Ketterling, Jeffrey ; Lee, Paul ; Dasgupta, Shreedevi ; Urban, Stella ; Kalisz, Andrew</creator><creatorcontrib>Feleppa, Ernest J. ; Porter, Christopher R. ; Ketterling, Jeffrey ; Lee, Paul ; Dasgupta, Shreedevi ; Urban, Stella ; Kalisz, Andrew</creatorcontrib><description>Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.</description><identifier>ISSN: 0161-7346</identifier><identifier>EISSN: 1096-0910</identifier><identifier>DOI: 10.1177/016173460402600303</identifier><identifier>PMID: 15754797</identifier><identifier>CODEN: ULIMD4</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Acoustics ; Biological and medical sciences ; Biopsy ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Male ; Medical sciences ; Miscellaneous. Technology ; Neural Networks (Computer) ; Patient Care Planning ; Physics ; Prostate-Specific Antigen - blood ; Prostatic Neoplasms - pathology ; Prostatic Neoplasms - therapy ; ROC Curve ; Signal Processing, Computer-Assisted ; Ultrasonic investigative techniques ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasonography, Interventional</subject><ispartof>Ultrasonic imaging, 2004-07, Vol.26 (3), p.163-172</ispartof><rights>2004 SAGE Publications</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013</citedby><cites>FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925,79236</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16589134$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15754797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feleppa, Ernest J.</creatorcontrib><creatorcontrib>Porter, Christopher R.</creatorcontrib><creatorcontrib>Ketterling, Jeffrey</creatorcontrib><creatorcontrib>Lee, Paul</creatorcontrib><creatorcontrib>Dasgupta, Shreedevi</creatorcontrib><creatorcontrib>Urban, Stella</creatorcontrib><creatorcontrib>Kalisz, Andrew</creatorcontrib><title>Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer</title><title>Ultrasonic imaging</title><addtitle>Ultrason Imaging</addtitle><description>Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.</description><subject>Acoustics</subject><subject>Biological and medical sciences</subject><subject>Biopsy</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Neural Networks (Computer)</subject><subject>Patient Care Planning</subject><subject>Physics</subject><subject>Prostate-Specific Antigen - blood</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Prostatic Neoplasms - therapy</subject><subject>ROC Curve</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Ultrasonic investigative techniques</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasonography, Interventional</subject><issn>0161-7346</issn><issn>1096-0910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJabZp_0AOQZeU9uBmZMmSfQmE7ddCSkNxz0LrHW0UbGkj2YH8-8rs0rQEepE00jPv6J0h5JTBR8aUugAmmeJCgoBSAnDgL8iCQSMLaBgckcUMFDNxTF6ndAfAmBTqFTlmlaqEatSCuJ_YoR_pJ3zAPuyGfE7Uedq6lCYs2scd0tVgts5v6fu2XX2gNkR60xvv5yvjN_R78G4McQ7biGacNWiw9CaGNJoR6dL4DuMb8tKaPuHbw35Cfn353C6_Fdc_vq6WV9dFV3E5Fg0XtVRs3dg6Lybb4szW2JiNFLwUwpacS17WIOuyEmJdgZDIFFadVWoNjJ-Qy73ubloPuJndRdPrXXSDiY86GKf_ffHuVm_Dg2Yy11Z1Fnh3EIjhfsI06sGlDvvsGcOUtFSlrKCBDJZ7sMtOU0T7pwgDPU9IP59QTjr7-3tPKYeRZOD8AJjUmd7G3D2XnjhZ1Q3jInMXey6ZLeq7MEWf2_q_0r8BxoilLg</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Feleppa, Ernest J.</creator><creator>Porter, Christopher R.</creator><creator>Ketterling, Jeffrey</creator><creator>Lee, Paul</creator><creator>Dasgupta, Shreedevi</creator><creator>Urban, Stella</creator><creator>Kalisz, Andrew</creator><general>SAGE Publications</general><general>Dynamedia</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040701</creationdate><title>Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer</title><author>Feleppa, Ernest J. ; Porter, Christopher R. ; Ketterling, Jeffrey ; Lee, Paul ; Dasgupta, Shreedevi ; Urban, Stella ; Kalisz, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acoustics</topic><topic>Biological and medical sciences</topic><topic>Biopsy</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Neural Networks (Computer)</topic><topic>Patient Care Planning</topic><topic>Physics</topic><topic>Prostate-Specific Antigen - blood</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Prostatic Neoplasms - therapy</topic><topic>ROC Curve</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Ultrasonic investigative techniques</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasonography, Interventional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feleppa, Ernest J.</creatorcontrib><creatorcontrib>Porter, Christopher R.</creatorcontrib><creatorcontrib>Ketterling, Jeffrey</creatorcontrib><creatorcontrib>Lee, Paul</creatorcontrib><creatorcontrib>Dasgupta, Shreedevi</creatorcontrib><creatorcontrib>Urban, Stella</creatorcontrib><creatorcontrib>Kalisz, Andrew</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ultrasonic imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feleppa, Ernest J.</au><au>Porter, Christopher R.</au><au>Ketterling, Jeffrey</au><au>Lee, Paul</au><au>Dasgupta, Shreedevi</au><au>Urban, Stella</au><au>Kalisz, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer</atitle><jtitle>Ultrasonic imaging</jtitle><addtitle>Ultrason Imaging</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>26</volume><issue>3</issue><spage>163</spage><epage>172</epage><pages>163-172</pages><issn>0161-7346</issn><eissn>1096-0910</eissn><coden>ULIMD4</coden><abstract>Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>15754797</pmid><doi>10.1177/016173460402600303</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0161-7346
ispartof Ultrasonic imaging, 2004-07, Vol.26 (3), p.163-172
issn 0161-7346
1096-0910
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1693478
source SAGE
subjects Acoustics
Biological and medical sciences
Biopsy
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Humans
Investigative techniques, diagnostic techniques (general aspects)
Male
Medical sciences
Miscellaneous. Technology
Neural Networks (Computer)
Patient Care Planning
Physics
Prostate-Specific Antigen - blood
Prostatic Neoplasms - pathology
Prostatic Neoplasms - therapy
ROC Curve
Signal Processing, Computer-Assisted
Ultrasonic investigative techniques
Ultrasonics, quantum acoustics, and physical effects of sound
Ultrasonography, Interventional
title Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Developments%20in%20Tissue-Type%20Imaging%20(TTI)%20for%20Planning%20and%20Monitoring%20Treatment%20of%20Prostate%20Cancer&rft.jtitle=Ultrasonic%20imaging&rft.au=Feleppa,%20Ernest%20J.&rft.date=2004-07-01&rft.volume=26&rft.issue=3&rft.spage=163&rft.epage=172&rft.pages=163-172&rft.issn=0161-7346&rft.eissn=1096-0910&rft.coden=ULIMD4&rft_id=info:doi/10.1177/016173460402600303&rft_dat=%3Cproquest_pubme%3E67265090%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c536t-9348671b9f81b9a00331f8e9ad643244f23363280682544b5046e17e5cf77b013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67265090&rft_id=info:pmid/15754797&rft_sage_id=10.1177_016173460402600303&rfr_iscdi=true