Loading…

combinatorial approach to create artificial homing endonucleases cleaving chosen sequences

Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2006-12, Vol.34 (22), p.e149-e149
Main Authors: Smith, Julianne, Grizot, Sylvestre, Arnould, Sylvain, Duclert, Aymeric, Epinat, Jean-Charles, Chames, Patrick, Prieto, Jesús, Redondo, Pilar, Blanco, Francisco J, Bravo, Jerónimo, Montoya, Guillermo, Pâques, Frédéric, Duchateau, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473
cites cdi_FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473
container_end_page e149
container_issue 22
container_start_page e149
container_title Nucleic acids research
container_volume 34
creator Smith, Julianne
Grizot, Sylvestre
Arnould, Sylvain
Duclert, Aymeric
Epinat, Jean-Charles
Chames, Patrick
Prieto, Jesús
Redondo, Pilar
Blanco, Francisco J
Bravo, Jerónimo
Montoya, Guillermo
Pâques, Frédéric
Duchateau, Philippe
description Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (>14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.
doi_str_mv 10.1093/nar/gkl720
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1702487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkl720</oup_id><sourcerecordid>19512816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMozp3RjT9AizAuhDonab66EWTwCwZc6GzchNM0ubdjm3SSdsB_b0svfi10dQ7nPDyc5CXkCYVXFOrqImC62H_rFYN7ZEcryUpeS3af7KACUVLg-oSc5nwDQDkV_CE5oYpWQKXeka82Dk0XcIqpw77AcUwR7aGYYmGTw8kVmKbOd3bdHuLQhX3hQhvDbHuH2eVirXfr2B5idqHI7nZ2wbr8iDzw2Gf3-FjPyPW7t18uP5RXn95_vHxzVVoh-FRazbjg2gsnOUoFCNjSGj0XlmLTKqErzj0wZI32qIS3TDWqAdF66SxX1Rl5vXnHuRlca12YEvZmTN2A6buJ2Jk_N6E7mH28M1QB43oVvDgKUlxuz5MZumxd32Nwcc5GaiYF0_q_IK0FZZrKBXz-F3gT5xSWXzAMQFageL1ALzfIpphzcv7nyRTMGqxZgjVbsAv89PdH_kKPSS7A-QbEefy36NnGeYwG96nL5vozg9VCGadL8wNc7rdc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200630749</pqid></control><display><type>article</type><title>combinatorial approach to create artificial homing endonucleases cleaving chosen sequences</title><source>Oxford Journals Open Access Collection</source><creator>Smith, Julianne ; Grizot, Sylvestre ; Arnould, Sylvain ; Duclert, Aymeric ; Epinat, Jean-Charles ; Chames, Patrick ; Prieto, Jesús ; Redondo, Pilar ; Blanco, Francisco J ; Bravo, Jerónimo ; Montoya, Guillermo ; Pâques, Frédéric ; Duchateau, Philippe</creator><creatorcontrib>Smith, Julianne ; Grizot, Sylvestre ; Arnould, Sylvain ; Duclert, Aymeric ; Epinat, Jean-Charles ; Chames, Patrick ; Prieto, Jesús ; Redondo, Pilar ; Blanco, Francisco J ; Bravo, Jerónimo ; Montoya, Guillermo ; Pâques, Frédéric ; Duchateau, Philippe</creatorcontrib><description>Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (&gt;14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkl720</identifier><identifier>PMID: 17130168</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Chlamydomonas ; Data Interpretation, Statistical ; Dimerization ; DNA - metabolism ; DNA Restriction Enzymes - chemistry ; DNA Restriction Enzymes - genetics ; DNA Restriction Enzymes - metabolism ; Genes, RAG-1 ; Humans ; Methods Online ; Mutation ; Nucleotides - metabolism ; Peptide Library ; Protein Engineering - methods ; Protein Structure, Tertiary ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2006-12, Vol.34 (22), p.e149-e149</ispartof><rights>2006 The Author(s). 2006</rights><rights>Copyright Oxford University Press(England) Dec 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473</citedby><cites>FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1702487/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1702487/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/nar/gkl720$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17130168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smith, Julianne</creatorcontrib><creatorcontrib>Grizot, Sylvestre</creatorcontrib><creatorcontrib>Arnould, Sylvain</creatorcontrib><creatorcontrib>Duclert, Aymeric</creatorcontrib><creatorcontrib>Epinat, Jean-Charles</creatorcontrib><creatorcontrib>Chames, Patrick</creatorcontrib><creatorcontrib>Prieto, Jesús</creatorcontrib><creatorcontrib>Redondo, Pilar</creatorcontrib><creatorcontrib>Blanco, Francisco J</creatorcontrib><creatorcontrib>Bravo, Jerónimo</creatorcontrib><creatorcontrib>Montoya, Guillermo</creatorcontrib><creatorcontrib>Pâques, Frédéric</creatorcontrib><creatorcontrib>Duchateau, Philippe</creatorcontrib><title>combinatorial approach to create artificial homing endonucleases cleaving chosen sequences</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (&gt;14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.</description><subject>Chlamydomonas</subject><subject>Data Interpretation, Statistical</subject><subject>Dimerization</subject><subject>DNA - metabolism</subject><subject>DNA Restriction Enzymes - chemistry</subject><subject>DNA Restriction Enzymes - genetics</subject><subject>DNA Restriction Enzymes - metabolism</subject><subject>Genes, RAG-1</subject><subject>Humans</subject><subject>Methods Online</subject><subject>Mutation</subject><subject>Nucleotides - metabolism</subject><subject>Peptide Library</subject><subject>Protein Engineering - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU2L1TAUhoMozp3RjT9AizAuhDonab66EWTwCwZc6GzchNM0ubdjm3SSdsB_b0svfi10dQ7nPDyc5CXkCYVXFOrqImC62H_rFYN7ZEcryUpeS3af7KACUVLg-oSc5nwDQDkV_CE5oYpWQKXeka82Dk0XcIqpw77AcUwR7aGYYmGTw8kVmKbOd3bdHuLQhX3hQhvDbHuH2eVirXfr2B5idqHI7nZ2wbr8iDzw2Gf3-FjPyPW7t18uP5RXn95_vHxzVVoh-FRazbjg2gsnOUoFCNjSGj0XlmLTKqErzj0wZI32qIS3TDWqAdF66SxX1Rl5vXnHuRlca12YEvZmTN2A6buJ2Jk_N6E7mH28M1QB43oVvDgKUlxuz5MZumxd32Nwcc5GaiYF0_q_IK0FZZrKBXz-F3gT5xSWXzAMQFageL1ALzfIpphzcv7nyRTMGqxZgjVbsAv89PdH_kKPSS7A-QbEefy36NnGeYwG96nL5vozg9VCGadL8wNc7rdc</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Smith, Julianne</creator><creator>Grizot, Sylvestre</creator><creator>Arnould, Sylvain</creator><creator>Duclert, Aymeric</creator><creator>Epinat, Jean-Charles</creator><creator>Chames, Patrick</creator><creator>Prieto, Jesús</creator><creator>Redondo, Pilar</creator><creator>Blanco, Francisco J</creator><creator>Bravo, Jerónimo</creator><creator>Montoya, Guillermo</creator><creator>Pâques, Frédéric</creator><creator>Duchateau, Philippe</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061201</creationdate><title>combinatorial approach to create artificial homing endonucleases cleaving chosen sequences</title><author>Smith, Julianne ; Grizot, Sylvestre ; Arnould, Sylvain ; Duclert, Aymeric ; Epinat, Jean-Charles ; Chames, Patrick ; Prieto, Jesús ; Redondo, Pilar ; Blanco, Francisco J ; Bravo, Jerónimo ; Montoya, Guillermo ; Pâques, Frédéric ; Duchateau, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chlamydomonas</topic><topic>Data Interpretation, Statistical</topic><topic>Dimerization</topic><topic>DNA - metabolism</topic><topic>DNA Restriction Enzymes - chemistry</topic><topic>DNA Restriction Enzymes - genetics</topic><topic>DNA Restriction Enzymes - metabolism</topic><topic>Genes, RAG-1</topic><topic>Humans</topic><topic>Methods Online</topic><topic>Mutation</topic><topic>Nucleotides - metabolism</topic><topic>Peptide Library</topic><topic>Protein Engineering - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Julianne</creatorcontrib><creatorcontrib>Grizot, Sylvestre</creatorcontrib><creatorcontrib>Arnould, Sylvain</creatorcontrib><creatorcontrib>Duclert, Aymeric</creatorcontrib><creatorcontrib>Epinat, Jean-Charles</creatorcontrib><creatorcontrib>Chames, Patrick</creatorcontrib><creatorcontrib>Prieto, Jesús</creatorcontrib><creatorcontrib>Redondo, Pilar</creatorcontrib><creatorcontrib>Blanco, Francisco J</creatorcontrib><creatorcontrib>Bravo, Jerónimo</creatorcontrib><creatorcontrib>Montoya, Guillermo</creatorcontrib><creatorcontrib>Pâques, Frédéric</creatorcontrib><creatorcontrib>Duchateau, Philippe</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Smith, Julianne</au><au>Grizot, Sylvestre</au><au>Arnould, Sylvain</au><au>Duclert, Aymeric</au><au>Epinat, Jean-Charles</au><au>Chames, Patrick</au><au>Prieto, Jesús</au><au>Redondo, Pilar</au><au>Blanco, Francisco J</au><au>Bravo, Jerónimo</au><au>Montoya, Guillermo</au><au>Pâques, Frédéric</au><au>Duchateau, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>combinatorial approach to create artificial homing endonucleases cleaving chosen sequences</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>34</volume><issue>22</issue><spage>e149</spage><epage>e149</epage><pages>e149-e149</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Meganucleases, or homing endonucleases (HEs) are sequence-specific endonucleases with large (&gt;14 bp) cleavage sites that can be used to induce efficient homologous gene targeting in cultured cells and plants. These findings have opened novel perspectives for genome engineering in a wide range of fields, including gene therapy. However, the number of identified HEs does not match the diversity of genomic sequences, and the probability of finding a homing site in a chosen gene is extremely low. Therefore, the design of artificial endonucleases with chosen specificities is under intense investigation. In this report, we describe the first artificial HEs whose specificity has been entirely redesigned to cleave a naturally occurring sequence. First, hundreds of novel endonucleases with locally altered substrate specificity were derived from I-CreI, a Chlamydomonas reinhardti protein belonging to the LAGLIDADG family of HEs. Second, distinct DNA-binding subdomains were identified within the protein. Third, we used these findings to assemble four sets of mutations into heterodimeric endonucleases cleaving a model target or a sequence from the human RAG1 gene. These results demonstrate that the plasticity of LAGLIDADG endonucleases allows extensive engineering, and provide a general method to create novel endonucleases with tailored specificities.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>17130168</pmid><doi>10.1093/nar/gkl720</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2006-12, Vol.34 (22), p.e149-e149
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1702487
source Oxford Journals Open Access Collection
subjects Chlamydomonas
Data Interpretation, Statistical
Dimerization
DNA - metabolism
DNA Restriction Enzymes - chemistry
DNA Restriction Enzymes - genetics
DNA Restriction Enzymes - metabolism
Genes, RAG-1
Humans
Methods Online
Mutation
Nucleotides - metabolism
Peptide Library
Protein Engineering - methods
Protein Structure, Tertiary
Substrate Specificity
title combinatorial approach to create artificial homing endonucleases cleaving chosen sequences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=combinatorial%20approach%20to%20create%20artificial%20homing%20endonucleases%20cleaving%20chosen%20sequences&rft.jtitle=Nucleic%20acids%20research&rft.au=Smith,%20Julianne&rft.date=2006-12-01&rft.volume=34&rft.issue=22&rft.spage=e149&rft.epage=e149&rft.pages=e149-e149&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkl720&rft_dat=%3Cproquest_TOX%3E19512816%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-c824548f5e64a670a0ad19af45c1abd758344f02a2b8fa75fc27b7b05df6ec473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200630749&rft_id=info:pmid/17130168&rft_oup_id=10.1093/nar/gkl720&rfr_iscdi=true