Loading…
Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days
Study objectives: To determine the validity of physical and mental unhealthy days as summary measures for county health status and to forward a method for examining county level health trends using a single year of data from the Behavioral Risk Factor Surveillance System (BRFSS). Design: The study a...
Saved in:
Published in: | Journal of epidemiology and community health (1979) 2004-02, Vol.58 (2), p.150-155 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b611t-2c8e917ce065648d1486b725520e49ae5075b5525491fc8de02eae1dcece4bc03 |
---|---|
cites | |
container_end_page | 155 |
container_issue | 2 |
container_start_page | 150 |
container_title | Journal of epidemiology and community health (1979) |
container_volume | 58 |
creator | Jia, H Muennig, P Lubetkin, E I Gold, M R |
description | Study objectives: To determine the validity of physical and mental unhealthy days as summary measures for county health status and to forward a method for examining county level health trends using a single year of data from the Behavioral Risk Factor Surveillance System (BRFSS). Design: The study analysed geographical variation in physical and mental unhealthy days at the state and county level using the 2000 BRFSS. Whereas state level analyses used individual level data, this research conducted multilevel regression analysis using county level data as independent variables and individual level reports of physical and mental unhealthy days as dependent variables. Setting: Population based samples of non-institutionalised civilian adult residents from each of the 50 states and the District of Columbia in the United States. Main results: Socioeconomic variables predicted similar mean numbers of physical and mental unhealthy days at both the state and county level, validating the county level analyses. County level disability rates were strongly associated with county mean unhealthy days. Using the regression method we forward, it is possible to analyse county level trends using a single year of BRFSS data. Conclusions: Physical and mental unhealthy days may be used as valid summary measures of county health status. Regression models may be used to assist local decision makers in assessing the needs of their communities and may be used to improve health resource allocation within states. |
doi_str_mv | 10.1136/jech.58.2.150 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1732662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A113305772</galeid><jstor_id>25570282</jstor_id><sourcerecordid>A113305772</sourcerecordid><originalsourceid>FETCH-LOGICAL-b611t-2c8e917ce065648d1486b725520e49ae5075b5525491fc8de02eae1dcece4bc03</originalsourceid><addsrcrecordid>eNqFkt-L1DAQx4so3nr66KNSEMWXrknaNO09CMf68zx_4C_uLaTptE2vTdaku7j_vbPssnfKgaSQaeYzM8nMN4oeUjKnNM1f9KC7OS_mbE45uRXNaCZIwkRa3I5mhGZpQgi_OIruhdATNAUr70ZHCLGyKMtZ5L54qI2ejG3jFlzr1bIzWg3xWnmjJuNsiI2NK-jU2riVR4834TJulJ6cDyexsvipYRNMiF0TLzu0tvHK1vEIdkKzAzVM3Sau1Sbcj-40agjwYL8fRz_evP6-eJecf377fnF6nlQ5pVPCdAElFRpIzvOsqGlW5JVgnDMCWamAE8Er_ONZSRtd1EAYKKC1Bg1ZpUl6HL3c5V2uqhHw3E54d7n0ZlR-I50y8m-PNZ1s3VpSkbI8Z5jg2T6Bd79WECY5mqBhGJQFtwqyIJQwkmYIPvkH7LFP2JKAuUTJCM1TilSyo1o1gDS2cVhVt2ABizsLjcHjU5xoijMS2_LzG3hcNYxG3xiwL6C9C8FDc3grJXKrFLlViuSFZBKVgvzj6w26ovfSQODpHlABB9p4ZbUJVxzPMp7mArlHO64PqIiDH2clCCuuXcyECX4f_MpfSowWXH76uZDfPn49O3vFLuQH5J_v-Grs__OGP6mc7gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779201631</pqid></control><display><type>article</type><title>Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>BMJ Journals</source><source>PubMed Central</source><creator>Jia, H ; Muennig, P ; Lubetkin, E I ; Gold, M R</creator><creatorcontrib>Jia, H ; Muennig, P ; Lubetkin, E I ; Gold, M R</creatorcontrib><description>Study objectives: To determine the validity of physical and mental unhealthy days as summary measures for county health status and to forward a method for examining county level health trends using a single year of data from the Behavioral Risk Factor Surveillance System (BRFSS). Design: The study analysed geographical variation in physical and mental unhealthy days at the state and county level using the 2000 BRFSS. Whereas state level analyses used individual level data, this research conducted multilevel regression analysis using county level data as independent variables and individual level reports of physical and mental unhealthy days as dependent variables. Setting: Population based samples of non-institutionalised civilian adult residents from each of the 50 states and the District of Columbia in the United States. Main results: Socioeconomic variables predicted similar mean numbers of physical and mental unhealthy days at both the state and county level, validating the county level analyses. County level disability rates were strongly associated with county mean unhealthy days. Using the regression method we forward, it is possible to analyse county level trends using a single year of BRFSS data. Conclusions: Physical and mental unhealthy days may be used as valid summary measures of county health status. Regression models may be used to assist local decision makers in assessing the needs of their communities and may be used to improve health resource allocation within states.</description><identifier>ISSN: 0143-005X</identifier><identifier>EISSN: 1470-2738</identifier><identifier>DOI: 10.1136/jech.58.2.150</identifier><identifier>PMID: 14729899</identifier><identifier>CODEN: JECHDR</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd</publisher><subject>Adolescent ; Adult ; Age ; Aged ; Attitude to Health ; Behavioral Risk Factor Surveillance System ; Bias ; Biological and medical sciences ; BRFSS ; CDC ; Decision making ; Decision Making, Organizational ; Disabilities ; Disability rates ; Disease control ; Employment ; Female ; Geography ; health related quality of life ; Health Resources - supply & distribution ; Health status ; Health Status Indicators ; HRQOL ; Humans ; Institutionalization ; Linear regression ; Male ; Medical sciences ; Mental health ; Methods ; Middle Aged ; Miscellaneous ; Mortality ; Parameter estimation ; Physical disabilities ; Population ; Poverty ; Predisposing factors ; Preventive medicine ; Public health. Hygiene ; Public health. Hygiene-occupational medicine ; Regression Analysis ; Residence Characteristics ; Resource allocation ; Risk factors ; Risk taking ; Small-Area Analysis ; Sociodemographics ; Socioeconomic factors ; The Centers for Disease Control and Prevention ; Theory and Methods ; Trends ; Unemployment ; United States - epidemiology</subject><ispartof>Journal of epidemiology and community health (1979), 2004-02, Vol.58 (2), p.150-155</ispartof><rights>Copyright 2004 Journal of Epidemiology and Community Health</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2004 BMJ Publishing Group Ltd.</rights><rights>Copyright: 2004 Copyright 2004 Journal of Epidemiology and Community Health</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b611t-2c8e917ce065648d1486b725520e49ae5075b5525491fc8de02eae1dcece4bc03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://jech.bmj.com/content/58/2/150.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttps://jech.bmj.com/content/58/2/150.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>112,113,230,314,725,778,782,883,3183,27913,27914,53780,53782,58227,58460,77353,77354</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15445367$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14729899$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, H</creatorcontrib><creatorcontrib>Muennig, P</creatorcontrib><creatorcontrib>Lubetkin, E I</creatorcontrib><creatorcontrib>Gold, M R</creatorcontrib><title>Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days</title><title>Journal of epidemiology and community health (1979)</title><addtitle>J Epidemiol Community Health</addtitle><description>Study objectives: To determine the validity of physical and mental unhealthy days as summary measures for county health status and to forward a method for examining county level health trends using a single year of data from the Behavioral Risk Factor Surveillance System (BRFSS). Design: The study analysed geographical variation in physical and mental unhealthy days at the state and county level using the 2000 BRFSS. Whereas state level analyses used individual level data, this research conducted multilevel regression analysis using county level data as independent variables and individual level reports of physical and mental unhealthy days as dependent variables. Setting: Population based samples of non-institutionalised civilian adult residents from each of the 50 states and the District of Columbia in the United States. Main results: Socioeconomic variables predicted similar mean numbers of physical and mental unhealthy days at both the state and county level, validating the county level analyses. County level disability rates were strongly associated with county mean unhealthy days. Using the regression method we forward, it is possible to analyse county level trends using a single year of BRFSS data. Conclusions: Physical and mental unhealthy days may be used as valid summary measures of county health status. Regression models may be used to assist local decision makers in assessing the needs of their communities and may be used to improve health resource allocation within states.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age</subject><subject>Aged</subject><subject>Attitude to Health</subject><subject>Behavioral Risk Factor Surveillance System</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>BRFSS</subject><subject>CDC</subject><subject>Decision making</subject><subject>Decision Making, Organizational</subject><subject>Disabilities</subject><subject>Disability rates</subject><subject>Disease control</subject><subject>Employment</subject><subject>Female</subject><subject>Geography</subject><subject>health related quality of life</subject><subject>Health Resources - supply & distribution</subject><subject>Health status</subject><subject>Health Status Indicators</subject><subject>HRQOL</subject><subject>Humans</subject><subject>Institutionalization</subject><subject>Linear regression</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mental health</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Miscellaneous</subject><subject>Mortality</subject><subject>Parameter estimation</subject><subject>Physical disabilities</subject><subject>Population</subject><subject>Poverty</subject><subject>Predisposing factors</subject><subject>Preventive medicine</subject><subject>Public health. Hygiene</subject><subject>Public health. Hygiene-occupational medicine</subject><subject>Regression Analysis</subject><subject>Residence Characteristics</subject><subject>Resource allocation</subject><subject>Risk factors</subject><subject>Risk taking</subject><subject>Small-Area Analysis</subject><subject>Sociodemographics</subject><subject>Socioeconomic factors</subject><subject>The Centers for Disease Control and Prevention</subject><subject>Theory and Methods</subject><subject>Trends</subject><subject>Unemployment</subject><subject>United States - epidemiology</subject><issn>0143-005X</issn><issn>1470-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkt-L1DAQx4so3nr66KNSEMWXrknaNO09CMf68zx_4C_uLaTptE2vTdaku7j_vbPssnfKgaSQaeYzM8nMN4oeUjKnNM1f9KC7OS_mbE45uRXNaCZIwkRa3I5mhGZpQgi_OIruhdATNAUr70ZHCLGyKMtZ5L54qI2ejG3jFlzr1bIzWg3xWnmjJuNsiI2NK-jU2riVR4834TJulJ6cDyexsvipYRNMiF0TLzu0tvHK1vEIdkKzAzVM3Sau1Sbcj-40agjwYL8fRz_evP6-eJecf377fnF6nlQ5pVPCdAElFRpIzvOsqGlW5JVgnDMCWamAE8Er_ONZSRtd1EAYKKC1Bg1ZpUl6HL3c5V2uqhHw3E54d7n0ZlR-I50y8m-PNZ1s3VpSkbI8Z5jg2T6Bd79WECY5mqBhGJQFtwqyIJQwkmYIPvkH7LFP2JKAuUTJCM1TilSyo1o1gDS2cVhVt2ABizsLjcHjU5xoijMS2_LzG3hcNYxG3xiwL6C9C8FDc3grJXKrFLlViuSFZBKVgvzj6w26ovfSQODpHlABB9p4ZbUJVxzPMp7mArlHO64PqIiDH2clCCuuXcyECX4f_MpfSowWXH76uZDfPn49O3vFLuQH5J_v-Grs__OGP6mc7gw</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>Jia, H</creator><creator>Muennig, P</creator><creator>Lubetkin, E I</creator><creator>Gold, M R</creator><general>BMJ Publishing Group Ltd</general><general>BMJ Publishing Group</general><general>BMJ</general><general>BMJ Publishing Group LTD</general><general>BMJ Group</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AN0</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040201</creationdate><title>Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days</title><author>Jia, H ; Muennig, P ; Lubetkin, E I ; Gold, M R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b611t-2c8e917ce065648d1486b725520e49ae5075b5525491fc8de02eae1dcece4bc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age</topic><topic>Aged</topic><topic>Attitude to Health</topic><topic>Behavioral Risk Factor Surveillance System</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>BRFSS</topic><topic>CDC</topic><topic>Decision making</topic><topic>Decision Making, Organizational</topic><topic>Disabilities</topic><topic>Disability rates</topic><topic>Disease control</topic><topic>Employment</topic><topic>Female</topic><topic>Geography</topic><topic>health related quality of life</topic><topic>Health Resources - supply & distribution</topic><topic>Health status</topic><topic>Health Status Indicators</topic><topic>HRQOL</topic><topic>Humans</topic><topic>Institutionalization</topic><topic>Linear regression</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mental health</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Miscellaneous</topic><topic>Mortality</topic><topic>Parameter estimation</topic><topic>Physical disabilities</topic><topic>Population</topic><topic>Poverty</topic><topic>Predisposing factors</topic><topic>Preventive medicine</topic><topic>Public health. Hygiene</topic><topic>Public health. Hygiene-occupational medicine</topic><topic>Regression Analysis</topic><topic>Residence Characteristics</topic><topic>Resource allocation</topic><topic>Risk factors</topic><topic>Risk taking</topic><topic>Small-Area Analysis</topic><topic>Sociodemographics</topic><topic>Socioeconomic factors</topic><topic>The Centers for Disease Control and Prevention</topic><topic>Theory and Methods</topic><topic>Trends</topic><topic>Unemployment</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, H</creatorcontrib><creatorcontrib>Muennig, P</creatorcontrib><creatorcontrib>Lubetkin, E I</creatorcontrib><creatorcontrib>Gold, M R</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>British Nursing Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of epidemiology and community health (1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, H</au><au>Muennig, P</au><au>Lubetkin, E I</au><au>Gold, M R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days</atitle><jtitle>Journal of epidemiology and community health (1979)</jtitle><addtitle>J Epidemiol Community Health</addtitle><date>2004-02-01</date><risdate>2004</risdate><volume>58</volume><issue>2</issue><spage>150</spage><epage>155</epage><pages>150-155</pages><issn>0143-005X</issn><eissn>1470-2738</eissn><coden>JECHDR</coden><abstract>Study objectives: To determine the validity of physical and mental unhealthy days as summary measures for county health status and to forward a method for examining county level health trends using a single year of data from the Behavioral Risk Factor Surveillance System (BRFSS). Design: The study analysed geographical variation in physical and mental unhealthy days at the state and county level using the 2000 BRFSS. Whereas state level analyses used individual level data, this research conducted multilevel regression analysis using county level data as independent variables and individual level reports of physical and mental unhealthy days as dependent variables. Setting: Population based samples of non-institutionalised civilian adult residents from each of the 50 states and the District of Columbia in the United States. Main results: Socioeconomic variables predicted similar mean numbers of physical and mental unhealthy days at both the state and county level, validating the county level analyses. County level disability rates were strongly associated with county mean unhealthy days. Using the regression method we forward, it is possible to analyse county level trends using a single year of BRFSS data. Conclusions: Physical and mental unhealthy days may be used as valid summary measures of county health status. Regression models may be used to assist local decision makers in assessing the needs of their communities and may be used to improve health resource allocation within states.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd</pub><pmid>14729899</pmid><doi>10.1136/jech.58.2.150</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-005X |
ispartof | Journal of epidemiology and community health (1979), 2004-02, Vol.58 (2), p.150-155 |
issn | 0143-005X 1470-2738 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1732662 |
source | JSTOR Archival Journals and Primary Sources Collection; BMJ Journals; PubMed Central |
subjects | Adolescent Adult Age Aged Attitude to Health Behavioral Risk Factor Surveillance System Bias Biological and medical sciences BRFSS CDC Decision making Decision Making, Organizational Disabilities Disability rates Disease control Employment Female Geography health related quality of life Health Resources - supply & distribution Health status Health Status Indicators HRQOL Humans Institutionalization Linear regression Male Medical sciences Mental health Methods Middle Aged Miscellaneous Mortality Parameter estimation Physical disabilities Population Poverty Predisposing factors Preventive medicine Public health. Hygiene Public health. Hygiene-occupational medicine Regression Analysis Residence Characteristics Resource allocation Risk factors Risk taking Small-Area Analysis Sociodemographics Socioeconomic factors The Centers for Disease Control and Prevention Theory and Methods Trends Unemployment United States - epidemiology |
title | Predicting geographical variations in behavioural risk factors: an analysis of physical and mental healthy days |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20geographical%20variations%20in%20behavioural%20risk%20factors:%20an%20analysis%20of%20physical%20and%20mental%20healthy%20days&rft.jtitle=Journal%20of%20epidemiology%20and%20community%20health%20(1979)&rft.au=Jia,%20H&rft.date=2004-02-01&rft.volume=58&rft.issue=2&rft.spage=150&rft.epage=155&rft.pages=150-155&rft.issn=0143-005X&rft.eissn=1470-2738&rft.coden=JECHDR&rft_id=info:doi/10.1136/jech.58.2.150&rft_dat=%3Cgale_pubme%3EA113305772%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b611t-2c8e917ce065648d1486b725520e49ae5075b5525491fc8de02eae1dcece4bc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779201631&rft_id=info:pmid/14729899&rft_galeid=A113305772&rft_jstor_id=25570282&rfr_iscdi=true |