Loading…
Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation
Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P 3 ) plays a crucial role in different signalling pathways including...
Saved in:
Published in: | The EMBO journal 2003-08, Vol.22 (16), p.4178-4189 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3 |
---|---|
cites | |
container_end_page | 4189 |
container_issue | 16 |
container_start_page | 4178 |
container_title | The EMBO journal |
container_volume | 22 |
creator | Falasca, Marco Maffucci, Tania Brancaccio, Anna Piccolo, Enza Stein, Robert C |
description | Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P
3
) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood. |
doi_str_mv | 10.1093/emboj/cdg402 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_175792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73564412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERbeFG1dQxKEn0trxV3zgQFeltGpBoKIiLpaTOBtvE3uxk8L-e7zNdrsgQBrJ1szzzrz2APAcwUMEBT7SXeHmR2U1IzB7BCaIMJhmkNPHYAIzhlKCcrEL9kKYQwhpztETsIsysQo2AZ_PbBhaYxNjq6HUIVk0Liwa1ZtqGdMumN61KU7v0zqpne9i2dmkb7wbZk1yNUUwUWVvbu_yT8FOrdqgn63PffDl3cnV9H168fH0bPr2Ii0ZznGak0KRgkFByoKSrFYCU17DTECteZUphmEleAwMiShhvCrNBee5YpyJqsD74M3YdzEUna5KbXuvWrnwplN-KZ0y8veKNY2cuVuJOOUii_qDtd6774MOvexMKHXbKqvdECTHlBGCVuCrP8C5G7yNb5NI0IzB-MMRej1CpXcheF1vjCAoV4uSd4uS46Ii_nLb_AO83kwE6Aj8MK1e_reZPLk8PudUUIxw1KWjLkSJnWm_ZfbvRl6MvFX94PVm0EO_f9Zhvj3PhF7_3JSVv5GMY07l9YdTmef8-NP1t0v5Ff8C0U3U3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195260189</pqid></control><display><type>article</type><title>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</title><source>PubMed Central</source><creator>Falasca, Marco ; Maffucci, Tania ; Brancaccio, Anna ; Piccolo, Enza ; Stein, Robert C</creator><creatorcontrib>Falasca, Marco ; Maffucci, Tania ; Brancaccio, Anna ; Piccolo, Enza ; Stein, Robert C</creatorcontrib><description>Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P
3
) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg402</identifier><identifier>PMID: 12912916</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>3T3 Cells ; Adipocytes - cytology ; Adipocytes - drug effects ; Adipocytes - metabolism ; Androstadienes - pharmacology ; Animals ; Cell Line ; Chromones - pharmacology ; Deoxyglucose - pharmacokinetics ; EMBO20 ; EMBO37 ; Enzyme Inhibitors - pharmacology ; Glucose Transporter Type 4 ; GLUT4 ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - pharmacology ; Membrane Microdomains - metabolism ; Membranes ; Mice ; Monosaccharide Transport Proteins - metabolism ; Morpholines - pharmacology ; Muscle Proteins ; phosphatidylinositol 3-kinase ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol Phosphates - antagonists & inhibitors ; Phosphatidylinositol Phosphates - biosynthesis ; Phosphatidylinositol Phosphates - pharmacology ; phosphatidylinositol-3-phosphate ; Platelet-Derived Growth Factor - pharmacology ; Recombinant Fusion Proteins - metabolism ; rho GTP-Binding Proteins - metabolism ; Second Messenger Systems ; TC10 ; Translocation</subject><ispartof>The EMBO journal, 2003-08, Vol.22 (16), p.4178-4189</ispartof><rights>European Molecular Biology Organization 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Aug 15, 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC175792/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC175792/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12912916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falasca, Marco</creatorcontrib><creatorcontrib>Maffucci, Tania</creatorcontrib><creatorcontrib>Brancaccio, Anna</creatorcontrib><creatorcontrib>Piccolo, Enza</creatorcontrib><creatorcontrib>Stein, Robert C</creatorcontrib><title>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P
3
) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.</description><subject>3T3 Cells</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Androstadienes - pharmacology</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Chromones - pharmacology</subject><subject>Deoxyglucose - pharmacokinetics</subject><subject>EMBO20</subject><subject>EMBO37</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glucose Transporter Type 4</subject><subject>GLUT4</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - pharmacology</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membranes</subject><subject>Mice</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Morpholines - pharmacology</subject><subject>Muscle Proteins</subject><subject>phosphatidylinositol 3-kinase</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol Phosphates - antagonists & inhibitors</subject><subject>Phosphatidylinositol Phosphates - biosynthesis</subject><subject>Phosphatidylinositol Phosphates - pharmacology</subject><subject>phosphatidylinositol-3-phosphate</subject><subject>Platelet-Derived Growth Factor - pharmacology</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>Second Messenger Systems</subject><subject>TC10</subject><subject>Translocation</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1ERbeFG1dQxKEn0trxV3zgQFeltGpBoKIiLpaTOBtvE3uxk8L-e7zNdrsgQBrJ1szzzrz2APAcwUMEBT7SXeHmR2U1IzB7BCaIMJhmkNPHYAIzhlKCcrEL9kKYQwhpztETsIsysQo2AZ_PbBhaYxNjq6HUIVk0Liwa1ZtqGdMumN61KU7v0zqpne9i2dmkb7wbZk1yNUUwUWVvbu_yT8FOrdqgn63PffDl3cnV9H168fH0bPr2Ii0ZznGak0KRgkFByoKSrFYCU17DTECteZUphmEleAwMiShhvCrNBee5YpyJqsD74M3YdzEUna5KbXuvWrnwplN-KZ0y8veKNY2cuVuJOOUii_qDtd6774MOvexMKHXbKqvdECTHlBGCVuCrP8C5G7yNb5NI0IzB-MMRej1CpXcheF1vjCAoV4uSd4uS46Ii_nLb_AO83kwE6Aj8MK1e_reZPLk8PudUUIxw1KWjLkSJnWm_ZfbvRl6MvFX94PVm0EO_f9Zhvj3PhF7_3JSVv5GMY07l9YdTmef8-NP1t0v5Ff8C0U3U3g</recordid><startdate>20030815</startdate><enddate>20030815</enddate><creator>Falasca, Marco</creator><creator>Maffucci, Tania</creator><creator>Brancaccio, Anna</creator><creator>Piccolo, Enza</creator><creator>Stein, Robert C</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030815</creationdate><title>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</title><author>Falasca, Marco ; Maffucci, Tania ; Brancaccio, Anna ; Piccolo, Enza ; Stein, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3T3 Cells</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Androstadienes - pharmacology</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Chromones - pharmacology</topic><topic>Deoxyglucose - pharmacokinetics</topic><topic>EMBO20</topic><topic>EMBO37</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glucose Transporter Type 4</topic><topic>GLUT4</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - pharmacology</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membranes</topic><topic>Mice</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Morpholines - pharmacology</topic><topic>Muscle Proteins</topic><topic>phosphatidylinositol 3-kinase</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol Phosphates - antagonists & inhibitors</topic><topic>Phosphatidylinositol Phosphates - biosynthesis</topic><topic>Phosphatidylinositol Phosphates - pharmacology</topic><topic>phosphatidylinositol-3-phosphate</topic><topic>Platelet-Derived Growth Factor - pharmacology</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>Second Messenger Systems</topic><topic>TC10</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falasca, Marco</creatorcontrib><creatorcontrib>Maffucci, Tania</creatorcontrib><creatorcontrib>Brancaccio, Anna</creatorcontrib><creatorcontrib>Piccolo, Enza</creatorcontrib><creatorcontrib>Stein, Robert C</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falasca, Marco</au><au>Maffucci, Tania</au><au>Brancaccio, Anna</au><au>Piccolo, Enza</au><au>Stein, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2003-08-15</date><risdate>2003</risdate><volume>22</volume><issue>16</issue><spage>4178</spage><epage>4189</epage><pages>4178-4189</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P
3
) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>12912916</pmid><doi>10.1093/emboj/cdg402</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2003-08, Vol.22 (16), p.4178-4189 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_175792 |
source | PubMed Central |
subjects | 3T3 Cells Adipocytes - cytology Adipocytes - drug effects Adipocytes - metabolism Androstadienes - pharmacology Animals Cell Line Chromones - pharmacology Deoxyglucose - pharmacokinetics EMBO20 EMBO37 Enzyme Inhibitors - pharmacology Glucose Transporter Type 4 GLUT4 Hypoglycemic Agents - pharmacology insulin Insulin - pharmacology Membrane Microdomains - metabolism Membranes Mice Monosaccharide Transport Proteins - metabolism Morpholines - pharmacology Muscle Proteins phosphatidylinositol 3-kinase Phosphatidylinositol 3-Kinases - metabolism Phosphatidylinositol Phosphates - antagonists & inhibitors Phosphatidylinositol Phosphates - biosynthesis Phosphatidylinositol Phosphates - pharmacology phosphatidylinositol-3-phosphate Platelet-Derived Growth Factor - pharmacology Recombinant Fusion Proteins - metabolism rho GTP-Binding Proteins - metabolism Second Messenger Systems TC10 Translocation |
title | Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20induces%20phosphatidylinositol-3-phosphate%20formation%20through%20TC10%20activation&rft.jtitle=The%20EMBO%20journal&rft.au=Falasca,%20Marco&rft.date=2003-08-15&rft.volume=22&rft.issue=16&rft.spage=4178&rft.epage=4189&rft.pages=4178-4189&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg402&rft_dat=%3Cproquest_pubme%3E73564412%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195260189&rft_id=info:pmid/12912916&rfr_iscdi=true |