Loading…

Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation

Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P 3 ) plays a crucial role in different signalling pathways including...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2003-08, Vol.22 (16), p.4178-4189
Main Authors: Falasca, Marco, Maffucci, Tania, Brancaccio, Anna, Piccolo, Enza, Stein, Robert C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3
cites
container_end_page 4189
container_issue 16
container_start_page 4178
container_title The EMBO journal
container_volume 22
creator Falasca, Marco
Maffucci, Tania
Brancaccio, Anna
Piccolo, Enza
Stein, Robert C
description Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P 3 ) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.
doi_str_mv 10.1093/emboj/cdg402
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_175792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73564412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERbeFG1dQxKEn0trxV3zgQFeltGpBoKIiLpaTOBtvE3uxk8L-e7zNdrsgQBrJ1szzzrz2APAcwUMEBT7SXeHmR2U1IzB7BCaIMJhmkNPHYAIzhlKCcrEL9kKYQwhpztETsIsysQo2AZ_PbBhaYxNjq6HUIVk0Liwa1ZtqGdMumN61KU7v0zqpne9i2dmkb7wbZk1yNUUwUWVvbu_yT8FOrdqgn63PffDl3cnV9H168fH0bPr2Ii0ZznGak0KRgkFByoKSrFYCU17DTECteZUphmEleAwMiShhvCrNBee5YpyJqsD74M3YdzEUna5KbXuvWrnwplN-KZ0y8veKNY2cuVuJOOUii_qDtd6774MOvexMKHXbKqvdECTHlBGCVuCrP8C5G7yNb5NI0IzB-MMRej1CpXcheF1vjCAoV4uSd4uS46Ii_nLb_AO83kwE6Aj8MK1e_reZPLk8PudUUIxw1KWjLkSJnWm_ZfbvRl6MvFX94PVm0EO_f9Zhvj3PhF7_3JSVv5GMY07l9YdTmef8-NP1t0v5Ff8C0U3U3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195260189</pqid></control><display><type>article</type><title>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</title><source>PubMed Central</source><creator>Falasca, Marco ; Maffucci, Tania ; Brancaccio, Anna ; Piccolo, Enza ; Stein, Robert C</creator><creatorcontrib>Falasca, Marco ; Maffucci, Tania ; Brancaccio, Anna ; Piccolo, Enza ; Stein, Robert C</creatorcontrib><description>Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P 3 ) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/cdg402</identifier><identifier>PMID: 12912916</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>3T3 Cells ; Adipocytes - cytology ; Adipocytes - drug effects ; Adipocytes - metabolism ; Androstadienes - pharmacology ; Animals ; Cell Line ; Chromones - pharmacology ; Deoxyglucose - pharmacokinetics ; EMBO20 ; EMBO37 ; Enzyme Inhibitors - pharmacology ; Glucose Transporter Type 4 ; GLUT4 ; Hypoglycemic Agents - pharmacology ; insulin ; Insulin - pharmacology ; Membrane Microdomains - metabolism ; Membranes ; Mice ; Monosaccharide Transport Proteins - metabolism ; Morpholines - pharmacology ; Muscle Proteins ; phosphatidylinositol 3-kinase ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphatidylinositol Phosphates - antagonists &amp; inhibitors ; Phosphatidylinositol Phosphates - biosynthesis ; Phosphatidylinositol Phosphates - pharmacology ; phosphatidylinositol-3-phosphate ; Platelet-Derived Growth Factor - pharmacology ; Recombinant Fusion Proteins - metabolism ; rho GTP-Binding Proteins - metabolism ; Second Messenger Systems ; TC10 ; Translocation</subject><ispartof>The EMBO journal, 2003-08, Vol.22 (16), p.4178-4189</ispartof><rights>European Molecular Biology Organization 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Aug 15, 2003</rights><rights>Copyright © 2003 European Molecular Biology Organization 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC175792/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC175792/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12912916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Falasca, Marco</creatorcontrib><creatorcontrib>Maffucci, Tania</creatorcontrib><creatorcontrib>Brancaccio, Anna</creatorcontrib><creatorcontrib>Piccolo, Enza</creatorcontrib><creatorcontrib>Stein, Robert C</creatorcontrib><title>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P 3 ) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.</description><subject>3T3 Cells</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Androstadienes - pharmacology</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Chromones - pharmacology</subject><subject>Deoxyglucose - pharmacokinetics</subject><subject>EMBO20</subject><subject>EMBO37</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Glucose Transporter Type 4</subject><subject>GLUT4</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>insulin</subject><subject>Insulin - pharmacology</subject><subject>Membrane Microdomains - metabolism</subject><subject>Membranes</subject><subject>Mice</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Morpholines - pharmacology</subject><subject>Muscle Proteins</subject><subject>phosphatidylinositol 3-kinase</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphatidylinositol Phosphates - antagonists &amp; inhibitors</subject><subject>Phosphatidylinositol Phosphates - biosynthesis</subject><subject>Phosphatidylinositol Phosphates - pharmacology</subject><subject>phosphatidylinositol-3-phosphate</subject><subject>Platelet-Derived Growth Factor - pharmacology</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>Second Messenger Systems</subject><subject>TC10</subject><subject>Translocation</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1ERbeFG1dQxKEn0trxV3zgQFeltGpBoKIiLpaTOBtvE3uxk8L-e7zNdrsgQBrJ1szzzrz2APAcwUMEBT7SXeHmR2U1IzB7BCaIMJhmkNPHYAIzhlKCcrEL9kKYQwhpztETsIsysQo2AZ_PbBhaYxNjq6HUIVk0Liwa1ZtqGdMumN61KU7v0zqpne9i2dmkb7wbZk1yNUUwUWVvbu_yT8FOrdqgn63PffDl3cnV9H168fH0bPr2Ii0ZznGak0KRgkFByoKSrFYCU17DTECteZUphmEleAwMiShhvCrNBee5YpyJqsD74M3YdzEUna5KbXuvWrnwplN-KZ0y8veKNY2cuVuJOOUii_qDtd6774MOvexMKHXbKqvdECTHlBGCVuCrP8C5G7yNb5NI0IzB-MMRej1CpXcheF1vjCAoV4uSd4uS46Ii_nLb_AO83kwE6Aj8MK1e_reZPLk8PudUUIxw1KWjLkSJnWm_ZfbvRl6MvFX94PVm0EO_f9Zhvj3PhF7_3JSVv5GMY07l9YdTmef8-NP1t0v5Ff8C0U3U3g</recordid><startdate>20030815</startdate><enddate>20030815</enddate><creator>Falasca, Marco</creator><creator>Maffucci, Tania</creator><creator>Brancaccio, Anna</creator><creator>Piccolo, Enza</creator><creator>Stein, Robert C</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030815</creationdate><title>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</title><author>Falasca, Marco ; Maffucci, Tania ; Brancaccio, Anna ; Piccolo, Enza ; Stein, Robert C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>3T3 Cells</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Androstadienes - pharmacology</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Chromones - pharmacology</topic><topic>Deoxyglucose - pharmacokinetics</topic><topic>EMBO20</topic><topic>EMBO37</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Glucose Transporter Type 4</topic><topic>GLUT4</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>insulin</topic><topic>Insulin - pharmacology</topic><topic>Membrane Microdomains - metabolism</topic><topic>Membranes</topic><topic>Mice</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Morpholines - pharmacology</topic><topic>Muscle Proteins</topic><topic>phosphatidylinositol 3-kinase</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphatidylinositol Phosphates - antagonists &amp; inhibitors</topic><topic>Phosphatidylinositol Phosphates - biosynthesis</topic><topic>Phosphatidylinositol Phosphates - pharmacology</topic><topic>phosphatidylinositol-3-phosphate</topic><topic>Platelet-Derived Growth Factor - pharmacology</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>Second Messenger Systems</topic><topic>TC10</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falasca, Marco</creatorcontrib><creatorcontrib>Maffucci, Tania</creatorcontrib><creatorcontrib>Brancaccio, Anna</creatorcontrib><creatorcontrib>Piccolo, Enza</creatorcontrib><creatorcontrib>Stein, Robert C</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falasca, Marco</au><au>Maffucci, Tania</au><au>Brancaccio, Anna</au><au>Piccolo, Enza</au><au>Stein, Robert C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2003-08-15</date><risdate>2003</risdate><volume>22</volume><issue>16</issue><spage>4178</spage><epage>4189</epage><pages>4178-4189</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Phosphatidylinositol‐3‐phosphate (PtdIns‐3‐P) is considered as a lipid constitutively present on endosomes; it does not seem to have a dynamic role in signalling. In contrast, phosphatidylinositol‐3,4,5‐trisphosphate (PtdIns‐3,4,5‐P 3 ) plays a crucial role in different signalling pathways including translocation of the glucose transporter protein GLUT4 to the plasma membrane upon insulin receptor activation. GLUT4 translocation requires activation of two distinct pathways involving phosphatidylinositol 3‐kinase (PI 3‐K) and the small GTP‐binding protein TC10, respectively. The contribution of each pathway remains to be elucidated. Here we show that insulin specifically induces the formation of PtdIns‐3‐P in insulin‐ responsive cells. The insulin‐mediated formation of PtdIns‐3‐P occurs through the activation of TC10 at the lipid rafts subdomain of the plasma membrane. Exogenous PtdIns‐3‐P induces the plasma membrane translocation of both overexpressed and endogenous GLUT4. These data indicate that PtdIns‐3‐P is specifically produced downstream from insulin‐mediated activation of TC10 to promote the plasma membrane translocation of GLUT4. These results give a new insight into the intracellular role of PtdIns‐3‐P and shed light on some aspects of insulin signalling so far not completely understood.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>12912916</pmid><doi>10.1093/emboj/cdg402</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2003-08, Vol.22 (16), p.4178-4189
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_175792
source PubMed Central
subjects 3T3 Cells
Adipocytes - cytology
Adipocytes - drug effects
Adipocytes - metabolism
Androstadienes - pharmacology
Animals
Cell Line
Chromones - pharmacology
Deoxyglucose - pharmacokinetics
EMBO20
EMBO37
Enzyme Inhibitors - pharmacology
Glucose Transporter Type 4
GLUT4
Hypoglycemic Agents - pharmacology
insulin
Insulin - pharmacology
Membrane Microdomains - metabolism
Membranes
Mice
Monosaccharide Transport Proteins - metabolism
Morpholines - pharmacology
Muscle Proteins
phosphatidylinositol 3-kinase
Phosphatidylinositol 3-Kinases - metabolism
Phosphatidylinositol Phosphates - antagonists & inhibitors
Phosphatidylinositol Phosphates - biosynthesis
Phosphatidylinositol Phosphates - pharmacology
phosphatidylinositol-3-phosphate
Platelet-Derived Growth Factor - pharmacology
Recombinant Fusion Proteins - metabolism
rho GTP-Binding Proteins - metabolism
Second Messenger Systems
TC10
Translocation
title Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin%20induces%20phosphatidylinositol-3-phosphate%20formation%20through%20TC10%20activation&rft.jtitle=The%20EMBO%20journal&rft.au=Falasca,%20Marco&rft.date=2003-08-15&rft.volume=22&rft.issue=16&rft.spage=4178&rft.epage=4189&rft.pages=4178-4189&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/cdg402&rft_dat=%3Cproquest_pubme%3E73564412%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6383-84ba4b6094cb542fa9357f0290ee7d2a630d97d973049c097dae79778a6769db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195260189&rft_id=info:pmid/12912916&rfr_iscdi=true