Loading…
Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat
Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy....
Saved in:
Published in: | Gut 2004-05, Vol.53 (5), p.655-660 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393 |
---|---|
cites | |
container_end_page | 660 |
container_issue | 5 |
container_start_page | 655 |
container_title | Gut |
container_volume | 53 |
creator | Millard, K N Frazer, D M Wilkins, S J Anderson, G J |
description | Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation. |
doi_str_mv | 10.1136/gut.2003.031153 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1774057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4014108301</sourcerecordid><originalsourceid>FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EYpfCmRuKhOCAlK4_ktq-IKGK72W5AKq4WBPXaV1SO9gObH8O_xRH6S4LF06WPI-fGc-L0EOC54SwxdlmSHOKMZtjRkjNbqFTUi1EyagQt9EpxoSXNa_kCboX4w5jLIQkd9EJqbGgtaCn6NdyC25jYmFdkbamMJd9MDFa7wrf5stkYrIOusKGfJUCuNj7kApw62JrekhWF8Fshg6SD4di7zujhy77sqiDK6nLTbRZTxJoog99GltAjF5bSLn006ZtkXtvXEYPV-MESPfRnRa6aB4czxn6_Orlp-Wb8vzj67fLF-dlU1OcSk6BcSHaqm5bJoWhIi9oLSuoiaRSi8rIhlG-EKYFTowmbYXXjdCScM0Ik2yGnk_efmj2Zq2Ny7_tVB_sHsJBebDq74qzW7XxPxThvMI1z4KnR0Hw34e8N7W3UZuuA2f8EBUngmJekQw-_gfc-SHkJcfRJRmthBx1ZxOlg48xmPZ6FILVGL7K4asxfDWFn188uvmDP_wx7Qw8OQIQNXRtTlPbeIPjJM84isqJszGZy-s6hG9qwRmv1cWXpVq9X31YfX13kbvP0LOJb_a7_075G1AP2Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779324897</pqid></control><display><type>article</type><title>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</title><source>Open Access: PubMed Central</source><creator>Millard, K N ; Frazer, D M ; Wilkins, S J ; Anderson, G J</creator><creatorcontrib>Millard, K N ; Frazer, D M ; Wilkins, S J ; Anderson, G J</creatorcontrib><description>Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>EISSN: 1458-3288</identifier><identifier>DOI: 10.1136/gut.2003.031153</identifier><identifier>PMID: 15082582</identifier><identifier>CODEN: GUTTAK</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Animals ; Antimicrobial Cationic Peptides - metabolism ; Biological and medical sciences ; Cation Transport Proteins - metabolism ; Dcytb ; divalent metal transporter 1 ; DMT1 ; duodenal cytochrome b ; Duodenum - metabolism ; Female ; Fetuses ; GAPDH ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene expression ; glyceraldehyde 3-phosphate dehydrogenase ; Hemochromatosis Protein ; Hepcidins ; hephaestin ; hereditary haemochromatosis ; HFE ; Histocompatibility Antigens Class I - metabolism ; Homeostasis - physiology ; Intestinal Absorption - physiology ; IRE ; Ireg1 ; Iron ; Iron - metabolism ; iron regulated mRNA (also known as ferroportin 1) ; iron regulation ; iron responsive element ; Iron-Binding Proteins - metabolism ; Liver - metabolism ; Medical research ; Medical sciences ; Membrane Proteins - metabolism ; Metabolism ; non-pregnant ; Placenta ; post-partum ; Pregnancy ; Pregnancy, Animal - metabolism ; Pregnancy, Animal - physiology ; Protein expression ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors, Transferrin - metabolism ; ribonuclease protection assay ; Rodents ; RPA ; Small Intestine ; Studies ; TfR ; the gene mutated in the most prevalent form of hereditary haemochromatosis ; transferrin receptor</subject><ispartof>Gut, 2004-05, Vol.53 (5), p.655-660</ispartof><rights>Copyright 2004 by Gut</rights><rights>2004 INIST-CNRS</rights><rights>Copyright: 2004 Copyright 2004 by Gut</rights><rights>Copyright © Copyright 2004 by Gut 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774057/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774057/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15711823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15082582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Millard, K N</creatorcontrib><creatorcontrib>Frazer, D M</creatorcontrib><creatorcontrib>Wilkins, S J</creatorcontrib><creatorcontrib>Anderson, G J</creatorcontrib><title>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</title><title>Gut</title><addtitle>Gut</addtitle><description>Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.</description><subject>Animals</subject><subject>Antimicrobial Cationic Peptides - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Dcytb</subject><subject>divalent metal transporter 1</subject><subject>DMT1</subject><subject>duodenal cytochrome b</subject><subject>Duodenum - metabolism</subject><subject>Female</subject><subject>Fetuses</subject><subject>GAPDH</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene expression</subject><subject>glyceraldehyde 3-phosphate dehydrogenase</subject><subject>Hemochromatosis Protein</subject><subject>Hepcidins</subject><subject>hephaestin</subject><subject>hereditary haemochromatosis</subject><subject>HFE</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>Homeostasis - physiology</subject><subject>Intestinal Absorption - physiology</subject><subject>IRE</subject><subject>Ireg1</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>iron regulated mRNA (also known as ferroportin 1)</subject><subject>iron regulation</subject><subject>iron responsive element</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Liver - metabolism</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolism</subject><subject>non-pregnant</subject><subject>Placenta</subject><subject>post-partum</subject><subject>Pregnancy</subject><subject>Pregnancy, Animal - metabolism</subject><subject>Pregnancy, Animal - physiology</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Transferrin - metabolism</subject><subject>ribonuclease protection assay</subject><subject>Rodents</subject><subject>RPA</subject><subject>Small Intestine</subject><subject>Studies</subject><subject>TfR</subject><subject>the gene mutated in the most prevalent form of hereditary haemochromatosis</subject><subject>transferrin receptor</subject><issn>0017-5749</issn><issn>1468-3288</issn><issn>1458-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhi0EYpfCmRuKhOCAlK4_ktq-IKGK72W5AKq4WBPXaV1SO9gObH8O_xRH6S4LF06WPI-fGc-L0EOC54SwxdlmSHOKMZtjRkjNbqFTUi1EyagQt9EpxoSXNa_kCboX4w5jLIQkd9EJqbGgtaCn6NdyC25jYmFdkbamMJd9MDFa7wrf5stkYrIOusKGfJUCuNj7kApw62JrekhWF8Fshg6SD4di7zujhy77sqiDK6nLTbRZTxJoog99GltAjF5bSLn006ZtkXtvXEYPV-MESPfRnRa6aB4czxn6_Orlp-Wb8vzj67fLF-dlU1OcSk6BcSHaqm5bJoWhIi9oLSuoiaRSi8rIhlG-EKYFTowmbYXXjdCScM0Ik2yGnk_efmj2Zq2Ny7_tVB_sHsJBebDq74qzW7XxPxThvMI1z4KnR0Hw34e8N7W3UZuuA2f8EBUngmJekQw-_gfc-SHkJcfRJRmthBx1ZxOlg48xmPZ6FILVGL7K4asxfDWFn188uvmDP_wx7Qw8OQIQNXRtTlPbeIPjJM84isqJszGZy-s6hG9qwRmv1cWXpVq9X31YfX13kbvP0LOJb_a7_075G1AP2Ig</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Millard, K N</creator><creator>Frazer, D M</creator><creator>Wilkins, S J</creator><creator>Anderson, G J</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ</general><general>BMJ Publishing Group LTD</general><general>Copyright 2004 by Gut</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040501</creationdate><title>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</title><author>Millard, K N ; Frazer, D M ; Wilkins, S J ; Anderson, G J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Antimicrobial Cationic Peptides - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Dcytb</topic><topic>divalent metal transporter 1</topic><topic>DMT1</topic><topic>duodenal cytochrome b</topic><topic>Duodenum - metabolism</topic><topic>Female</topic><topic>Fetuses</topic><topic>GAPDH</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene expression</topic><topic>glyceraldehyde 3-phosphate dehydrogenase</topic><topic>Hemochromatosis Protein</topic><topic>Hepcidins</topic><topic>hephaestin</topic><topic>hereditary haemochromatosis</topic><topic>HFE</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>Homeostasis - physiology</topic><topic>Intestinal Absorption - physiology</topic><topic>IRE</topic><topic>Ireg1</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>iron regulated mRNA (also known as ferroportin 1)</topic><topic>iron regulation</topic><topic>iron responsive element</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Liver - metabolism</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolism</topic><topic>non-pregnant</topic><topic>Placenta</topic><topic>post-partum</topic><topic>Pregnancy</topic><topic>Pregnancy, Animal - metabolism</topic><topic>Pregnancy, Animal - physiology</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Transferrin - metabolism</topic><topic>ribonuclease protection assay</topic><topic>Rodents</topic><topic>RPA</topic><topic>Small Intestine</topic><topic>Studies</topic><topic>TfR</topic><topic>the gene mutated in the most prevalent form of hereditary haemochromatosis</topic><topic>transferrin receptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millard, K N</creatorcontrib><creatorcontrib>Frazer, D M</creatorcontrib><creatorcontrib>Wilkins, S J</creatorcontrib><creatorcontrib>Anderson, G J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millard, K N</au><au>Frazer, D M</au><au>Wilkins, S J</au><au>Anderson, G J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>53</volume><issue>5</issue><spage>655</spage><epage>660</epage><pages>655-660</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><eissn>1458-3288</eissn><coden>GUTTAK</coden><abstract>Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>15082582</pmid><doi>10.1136/gut.2003.031153</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-5749 |
ispartof | Gut, 2004-05, Vol.53 (5), p.655-660 |
issn | 0017-5749 1468-3288 1458-3288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1774057 |
source | Open Access: PubMed Central |
subjects | Animals Antimicrobial Cationic Peptides - metabolism Biological and medical sciences Cation Transport Proteins - metabolism Dcytb divalent metal transporter 1 DMT1 duodenal cytochrome b Duodenum - metabolism Female Fetuses GAPDH Gastroenterology. Liver. Pancreas. Abdomen Gene expression glyceraldehyde 3-phosphate dehydrogenase Hemochromatosis Protein Hepcidins hephaestin hereditary haemochromatosis HFE Histocompatibility Antigens Class I - metabolism Homeostasis - physiology Intestinal Absorption - physiology IRE Ireg1 Iron Iron - metabolism iron regulated mRNA (also known as ferroportin 1) iron regulation iron responsive element Iron-Binding Proteins - metabolism Liver - metabolism Medical research Medical sciences Membrane Proteins - metabolism Metabolism non-pregnant Placenta post-partum Pregnancy Pregnancy, Animal - metabolism Pregnancy, Animal - physiology Protein expression Proteins Rats Rats, Sprague-Dawley Receptors, Transferrin - metabolism ribonuclease protection assay Rodents RPA Small Intestine Studies TfR the gene mutated in the most prevalent form of hereditary haemochromatosis transferrin receptor |
title | Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20the%20expression%20of%20intestinal%20iron%20transport%20and%20hepatic%20regulatory%20molecules%20explain%20the%20enhanced%20iron%20absorption%20associated%20with%20pregnancy%20in%20the%20rat&rft.jtitle=Gut&rft.au=Millard,%20K%20N&rft.date=2004-05-01&rft.volume=53&rft.issue=5&rft.spage=655&rft.epage=660&rft.pages=655-660&rft.issn=0017-5749&rft.eissn=1468-3288&rft.coden=GUTTAK&rft_id=info:doi/10.1136/gut.2003.031153&rft_dat=%3Cproquest_pubme%3E4014108301%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779324897&rft_id=info:pmid/15082582&rfr_iscdi=true |