Loading…

Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat

Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy....

Full description

Saved in:
Bibliographic Details
Published in:Gut 2004-05, Vol.53 (5), p.655-660
Main Authors: Millard, K N, Frazer, D M, Wilkins, S J, Anderson, G J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393
cites
container_end_page 660
container_issue 5
container_start_page 655
container_title Gut
container_volume 53
creator Millard, K N
Frazer, D M
Wilkins, S J
Anderson, G J
description Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.
doi_str_mv 10.1136/gut.2003.031153
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1774057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4014108301</sourcerecordid><originalsourceid>FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhi0EYpfCmRuKhOCAlK4_ktq-IKGK72W5AKq4WBPXaV1SO9gObH8O_xRH6S4LF06WPI-fGc-L0EOC54SwxdlmSHOKMZtjRkjNbqFTUi1EyagQt9EpxoSXNa_kCboX4w5jLIQkd9EJqbGgtaCn6NdyC25jYmFdkbamMJd9MDFa7wrf5stkYrIOusKGfJUCuNj7kApw62JrekhWF8Fshg6SD4di7zujhy77sqiDK6nLTbRZTxJoog99GltAjF5bSLn006ZtkXtvXEYPV-MESPfRnRa6aB4czxn6_Orlp-Wb8vzj67fLF-dlU1OcSk6BcSHaqm5bJoWhIi9oLSuoiaRSi8rIhlG-EKYFTowmbYXXjdCScM0Ik2yGnk_efmj2Zq2Ny7_tVB_sHsJBebDq74qzW7XxPxThvMI1z4KnR0Hw34e8N7W3UZuuA2f8EBUngmJekQw-_gfc-SHkJcfRJRmthBx1ZxOlg48xmPZ6FILVGL7K4asxfDWFn188uvmDP_wx7Qw8OQIQNXRtTlPbeIPjJM84isqJszGZy-s6hG9qwRmv1cWXpVq9X31YfX13kbvP0LOJb_a7_075G1AP2Ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779324897</pqid></control><display><type>article</type><title>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</title><source>Open Access: PubMed Central</source><creator>Millard, K N ; Frazer, D M ; Wilkins, S J ; Anderson, G J</creator><creatorcontrib>Millard, K N ; Frazer, D M ; Wilkins, S J ; Anderson, G J</creatorcontrib><description>Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>EISSN: 1458-3288</identifier><identifier>DOI: 10.1136/gut.2003.031153</identifier><identifier>PMID: 15082582</identifier><identifier>CODEN: GUTTAK</identifier><language>eng</language><publisher>London: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Animals ; Antimicrobial Cationic Peptides - metabolism ; Biological and medical sciences ; Cation Transport Proteins - metabolism ; Dcytb ; divalent metal transporter 1 ; DMT1 ; duodenal cytochrome b ; Duodenum - metabolism ; Female ; Fetuses ; GAPDH ; Gastroenterology. Liver. Pancreas. Abdomen ; Gene expression ; glyceraldehyde 3-phosphate dehydrogenase ; Hemochromatosis Protein ; Hepcidins ; hephaestin ; hereditary haemochromatosis ; HFE ; Histocompatibility Antigens Class I - metabolism ; Homeostasis - physiology ; Intestinal Absorption - physiology ; IRE ; Ireg1 ; Iron ; Iron - metabolism ; iron regulated mRNA (also known as ferroportin 1) ; iron regulation ; iron responsive element ; Iron-Binding Proteins - metabolism ; Liver - metabolism ; Medical research ; Medical sciences ; Membrane Proteins - metabolism ; Metabolism ; non-pregnant ; Placenta ; post-partum ; Pregnancy ; Pregnancy, Animal - metabolism ; Pregnancy, Animal - physiology ; Protein expression ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors, Transferrin - metabolism ; ribonuclease protection assay ; Rodents ; RPA ; Small Intestine ; Studies ; TfR ; the gene mutated in the most prevalent form of hereditary haemochromatosis ; transferrin receptor</subject><ispartof>Gut, 2004-05, Vol.53 (5), p.655-660</ispartof><rights>Copyright 2004 by Gut</rights><rights>2004 INIST-CNRS</rights><rights>Copyright: 2004 Copyright 2004 by Gut</rights><rights>Copyright © Copyright 2004 by Gut 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774057/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774057/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15711823$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15082582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Millard, K N</creatorcontrib><creatorcontrib>Frazer, D M</creatorcontrib><creatorcontrib>Wilkins, S J</creatorcontrib><creatorcontrib>Anderson, G J</creatorcontrib><title>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</title><title>Gut</title><addtitle>Gut</addtitle><description>Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.</description><subject>Animals</subject><subject>Antimicrobial Cationic Peptides - metabolism</subject><subject>Biological and medical sciences</subject><subject>Cation Transport Proteins - metabolism</subject><subject>Dcytb</subject><subject>divalent metal transporter 1</subject><subject>DMT1</subject><subject>duodenal cytochrome b</subject><subject>Duodenum - metabolism</subject><subject>Female</subject><subject>Fetuses</subject><subject>GAPDH</subject><subject>Gastroenterology. Liver. Pancreas. Abdomen</subject><subject>Gene expression</subject><subject>glyceraldehyde 3-phosphate dehydrogenase</subject><subject>Hemochromatosis Protein</subject><subject>Hepcidins</subject><subject>hephaestin</subject><subject>hereditary haemochromatosis</subject><subject>HFE</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>Homeostasis - physiology</subject><subject>Intestinal Absorption - physiology</subject><subject>IRE</subject><subject>Ireg1</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>iron regulated mRNA (also known as ferroportin 1)</subject><subject>iron regulation</subject><subject>iron responsive element</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Liver - metabolism</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Membrane Proteins - metabolism</subject><subject>Metabolism</subject><subject>non-pregnant</subject><subject>Placenta</subject><subject>post-partum</subject><subject>Pregnancy</subject><subject>Pregnancy, Animal - metabolism</subject><subject>Pregnancy, Animal - physiology</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Transferrin - metabolism</subject><subject>ribonuclease protection assay</subject><subject>Rodents</subject><subject>RPA</subject><subject>Small Intestine</subject><subject>Studies</subject><subject>TfR</subject><subject>the gene mutated in the most prevalent form of hereditary haemochromatosis</subject><subject>transferrin receptor</subject><issn>0017-5749</issn><issn>1468-3288</issn><issn>1458-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkU2P0zAQhi0EYpfCmRuKhOCAlK4_ktq-IKGK72W5AKq4WBPXaV1SO9gObH8O_xRH6S4LF06WPI-fGc-L0EOC54SwxdlmSHOKMZtjRkjNbqFTUi1EyagQt9EpxoSXNa_kCboX4w5jLIQkd9EJqbGgtaCn6NdyC25jYmFdkbamMJd9MDFa7wrf5stkYrIOusKGfJUCuNj7kApw62JrekhWF8Fshg6SD4di7zujhy77sqiDK6nLTbRZTxJoog99GltAjF5bSLn006ZtkXtvXEYPV-MESPfRnRa6aB4czxn6_Orlp-Wb8vzj67fLF-dlU1OcSk6BcSHaqm5bJoWhIi9oLSuoiaRSi8rIhlG-EKYFTowmbYXXjdCScM0Ik2yGnk_efmj2Zq2Ny7_tVB_sHsJBebDq74qzW7XxPxThvMI1z4KnR0Hw34e8N7W3UZuuA2f8EBUngmJekQw-_gfc-SHkJcfRJRmthBx1ZxOlg48xmPZ6FILVGL7K4asxfDWFn188uvmDP_wx7Qw8OQIQNXRtTlPbeIPjJM84isqJszGZy-s6hG9qwRmv1cWXpVq9X31YfX13kbvP0LOJb_a7_075G1AP2Ig</recordid><startdate>20040501</startdate><enddate>20040501</enddate><creator>Millard, K N</creator><creator>Frazer, D M</creator><creator>Wilkins, S J</creator><creator>Anderson, G J</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ</general><general>BMJ Publishing Group LTD</general><general>Copyright 2004 by Gut</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040501</creationdate><title>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</title><author>Millard, K N ; Frazer, D M ; Wilkins, S J ; Anderson, G J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Antimicrobial Cationic Peptides - metabolism</topic><topic>Biological and medical sciences</topic><topic>Cation Transport Proteins - metabolism</topic><topic>Dcytb</topic><topic>divalent metal transporter 1</topic><topic>DMT1</topic><topic>duodenal cytochrome b</topic><topic>Duodenum - metabolism</topic><topic>Female</topic><topic>Fetuses</topic><topic>GAPDH</topic><topic>Gastroenterology. Liver. Pancreas. Abdomen</topic><topic>Gene expression</topic><topic>glyceraldehyde 3-phosphate dehydrogenase</topic><topic>Hemochromatosis Protein</topic><topic>Hepcidins</topic><topic>hephaestin</topic><topic>hereditary haemochromatosis</topic><topic>HFE</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>Homeostasis - physiology</topic><topic>Intestinal Absorption - physiology</topic><topic>IRE</topic><topic>Ireg1</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>iron regulated mRNA (also known as ferroportin 1)</topic><topic>iron regulation</topic><topic>iron responsive element</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Liver - metabolism</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Membrane Proteins - metabolism</topic><topic>Metabolism</topic><topic>non-pregnant</topic><topic>Placenta</topic><topic>post-partum</topic><topic>Pregnancy</topic><topic>Pregnancy, Animal - metabolism</topic><topic>Pregnancy, Animal - physiology</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Transferrin - metabolism</topic><topic>ribonuclease protection assay</topic><topic>Rodents</topic><topic>RPA</topic><topic>Small Intestine</topic><topic>Studies</topic><topic>TfR</topic><topic>the gene mutated in the most prevalent form of hereditary haemochromatosis</topic><topic>transferrin receptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millard, K N</creatorcontrib><creatorcontrib>Frazer, D M</creatorcontrib><creatorcontrib>Wilkins, S J</creatorcontrib><creatorcontrib>Anderson, G J</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millard, K N</au><au>Frazer, D M</au><au>Wilkins, S J</au><au>Anderson, G J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2004-05-01</date><risdate>2004</risdate><volume>53</volume><issue>5</issue><spage>655</spage><epage>660</epage><pages>655-660</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><eissn>1458-3288</eissn><coden>GUTTAK</coden><abstract>Background: Iron absorption increases during pregnancy to cater for the increased iron requirements of the growing fetus. Aims: To investigate the role of the duodenal iron transport molecules and hepatic regulatory molecules in coordinating the changes in iron absorption observed during pregnancy. Methods: Rats at various days of gestation and 24–48 hours post-partum were examined for hepatic expression of hepcidin, transferrin receptors 1 and 2, and HFE (the gene mutated in the most prevalent form of hereditary haemochromatosis), and duodenal expression of divalent metal transporter 1 (DMT1), duodenal cytochrome b (Dcytb), iron regulated mRNA (Ireg1), and hephaestin (Hp) by ribonuclease protection assay, western blotting, and immunohistochemistry. Results: Decreased hepatic non-haem iron and transferrin saturation and increased expression of transferrin receptor 1 in the liver indicated a progressive reduction in maternal body iron stores during pregnancy. Duodenal expression of the iron transport molecules DMT1, Dcytb, and Ireg1 increased during pregnancy, and this corresponded with a reduction in hepcidin, HFE, and transferrin receptor 2 expression in the liver. Expression of all molecules returned towards control values by 24–48 hours post-partum. Conclusions: These data indicate that increased expression of key iron transport molecules is responsible for the elevated iron absorption associated with pregnancy, and implicate hepcidin, HFE, and transferrin receptor 2 in determining how the maternal iron homeostatic machinery responds to the increased iron demands accompanying gestation.</abstract><cop>London</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>15082582</pmid><doi>10.1136/gut.2003.031153</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2004-05, Vol.53 (5), p.655-660
issn 0017-5749
1468-3288
1458-3288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1774057
source Open Access: PubMed Central
subjects Animals
Antimicrobial Cationic Peptides - metabolism
Biological and medical sciences
Cation Transport Proteins - metabolism
Dcytb
divalent metal transporter 1
DMT1
duodenal cytochrome b
Duodenum - metabolism
Female
Fetuses
GAPDH
Gastroenterology. Liver. Pancreas. Abdomen
Gene expression
glyceraldehyde 3-phosphate dehydrogenase
Hemochromatosis Protein
Hepcidins
hephaestin
hereditary haemochromatosis
HFE
Histocompatibility Antigens Class I - metabolism
Homeostasis - physiology
Intestinal Absorption - physiology
IRE
Ireg1
Iron
Iron - metabolism
iron regulated mRNA (also known as ferroportin 1)
iron regulation
iron responsive element
Iron-Binding Proteins - metabolism
Liver - metabolism
Medical research
Medical sciences
Membrane Proteins - metabolism
Metabolism
non-pregnant
Placenta
post-partum
Pregnancy
Pregnancy, Animal - metabolism
Pregnancy, Animal - physiology
Protein expression
Proteins
Rats
Rats, Sprague-Dawley
Receptors, Transferrin - metabolism
ribonuclease protection assay
Rodents
RPA
Small Intestine
Studies
TfR
the gene mutated in the most prevalent form of hereditary haemochromatosis
transferrin receptor
title Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20the%20expression%20of%20intestinal%20iron%20transport%20and%20hepatic%20regulatory%20molecules%20explain%20the%20enhanced%20iron%20absorption%20associated%20with%20pregnancy%20in%20the%20rat&rft.jtitle=Gut&rft.au=Millard,%20K%20N&rft.date=2004-05-01&rft.volume=53&rft.issue=5&rft.spage=655&rft.epage=660&rft.pages=655-660&rft.issn=0017-5749&rft.eissn=1468-3288&rft.coden=GUTTAK&rft_id=info:doi/10.1136/gut.2003.031153&rft_dat=%3Cproquest_pubme%3E4014108301%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b520t-72a3788f45ff398e28113d94a51929c84e9b32768efa71ec1f40db8c917c31393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779324897&rft_id=info:pmid/15082582&rfr_iscdi=true