Loading…
B7RP-1-ICOS Interactions Are Required for Optimal Infection-Induced Expansion of CD4+ Th1 and Th2 Responses
Although initial reports linked the costimulatory molecule ICOS preferentially with the development of Th2 cells, there is evidence that it is not required for protective type 2 immunity to helminths and that it contributes to Th1 and Th2 responses to other parasites. To address the role of ICOS in...
Saved in:
Published in: | The Journal of immunology (1950) 2006-08, Vol.177 (4), p.2365-2372 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although initial reports linked the costimulatory molecule ICOS preferentially with the development of Th2 cells, there is evidence that it is not required for protective type 2 immunity to helminths and that it contributes to Th1 and Th2 responses to other parasites. To address the role of ICOS in the development of infection-induced polarized Th cells, ICOS(-/-) mice were infected with Trichuris muris or Toxoplasma gondii. Wild-type mice challenged with T. muris developed Th2 responses and expelled these helminths by day 18 postinfection, whereas ICOS(-/-) mice failed to clear worms and produced reduced levels of type 2 cytokines. However, by day 35 postinfection, ICOS(-/-) mice were able to mount an effective Th2 response and worms were expelled. This delay in protective immunity was associated with a defect in infection-induced increases in the number of activated and proliferating CD4+ T cells. Similarly, following challenge with T. gondii ICOS was required for optimal proliferation by CD4+ T cells. However, the reduced number of activated CD4+ T cells and associated defect in the production of IFN-gamma did not result in increased susceptibility to T. gondii, but rather resulted in decreased CNS pathology during the chronic phase of this infection. Taken together, these data are consistent with a model in which ICOS is not involved in dictating polarity of the Th response but rather regulates the expansion of these subsets. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.177.4.2365 |