Loading…

Synthesis of N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine: An Application of Lanthanide-Catalyzed Transamidation

N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine (6) was synthesized from tert-butyl N-Boc-(2S,3S,4R)-dimethylpyroglutamate (13). This synthesis involved selective deprotection of a Boc group from a lactam nitrogen in the presence of a tert-butyl ester, Fmoc protection of the lactam, and a lanthanide-catalyz...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2005-08, Vol.70 (16), p.6218-6221
Main Authors: Çalimsiz, Selçuk, Lipton, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:N-Fmoc-(2S,3S,4R)-3,4-dimethylglutamine (6) was synthesized from tert-butyl N-Boc-(2S,3S,4R)-dimethylpyroglutamate (13). This synthesis involved selective deprotection of a Boc group from a lactam nitrogen in the presence of a tert-butyl ester, Fmoc protection of the lactam, and a lanthanide-catalyzed transamidation reaction of the Fmoc-protected lactam, using ammonia and dimethylaluminum chloride. The scope of Lewis acid-catalyzed transamidation of acylated lactams was explored through the variation of lanthanide, lactam, acyl group, amine, and aluminum reagent. The reactivity of various metal triflates was found to vary in the following qualitative order:  Yb ∼ Sc > Er ∼ Eu ∼ Sm > Ce ∼ AgI > CuII ∼ Zn. Intriguingly, catalysis was only observed when ammonia was the nitrogen nucleophile; addition of other amidoaluminum complexes to acyl lactams was found to be insensitive to the addition of lanthanides.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo050518r