Loading…

PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase

Elucidation of the molecular mechanisms underlying carcinogenesis has benefited tremendously from the identification and characterization of oncogenes and tumor suppressor genes. One new advance in this field is the identification of PTPN11 as the first proto-oncogene that encodes a cytoplasmic tyro...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2007-02, Vol.109 (3), p.862-867
Main Authors: Chan, Rebecca J., Feng, Gen-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Elucidation of the molecular mechanisms underlying carcinogenesis has benefited tremendously from the identification and characterization of oncogenes and tumor suppressor genes. One new advance in this field is the identification of PTPN11 as the first proto-oncogene that encodes a cytoplasmic tyrosine phosphatase with 2 Src-homology 2 (SH2) domains (Shp2). This tyrosine phosphatase was previously shown to play an essential role in normal hematopoiesis. More recently, somatic missense PTPN11 gain-of-function mutations have been detected in leukemias and rarely in solid tumors, and have been found to induce aberrant hyperactivation of the Ras-Erk pathway. This progress represents another milestone in the leukemia/cancer research field and provides a fresh view on the molecular mechanisms underlying cell transformation.
ISSN:0006-4971
1528-0020
DOI:10.1182/blood-2006-07-028829