Loading…

Asymmetry of intronic pre-miRNA structures in functional RISC assembly

The two oligonucleotide strands of a siRNA duplex are functionally asymmetric in assembling the RNAi effector, RNA-induced gene silencing complex (RISC). Based on this asymmetric RISC assembly model in vitro, formation of a microRNA (miRNA) and complementary miRNA (miRNA*) duplex was proposed to be...

Full description

Saved in:
Bibliographic Details
Published in:Gene 2005-08, Vol.356, p.32-38
Main Authors: Lin, Shi-Lung, Chang, Donald, Ying, Shao-Yao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The two oligonucleotide strands of a siRNA duplex are functionally asymmetric in assembling the RNAi effector, RNA-induced gene silencing complex (RISC). Based on this asymmetric RISC assembly model in vitro, formation of a microRNA (miRNA) and complementary miRNA (miRNA*) duplex was proposed to be an essential step for the assembly of miRNA-associated RISC (miRISC). We observed here that a strong structural bias exists in the selection of a mature miRNA strand for RISC assembly in zebrafish using an intronic miRNA-like vector to target EGFP mRNA for regulation. The position of the stemloop in a precursor miRNA (pre-miRNA) was involved in the determination of miRNA–miRNA* asymmetry of the pre-miRNA stemarm, leading to different miRNA maturation during miRISC assembly. These findings suggest that the miRISC assembly is likely different from the RISC assembly model of siRNA in zebrafish, providing the first in vivo evidence for asymmetric miRISC assembly.
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2005.04.036