Loading…
Molecular basis of coiled-coil formation
Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical f...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2007-04, Vol.104 (17), p.7062-7067 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3 |
container_end_page | 7067 |
container_issue | 17 |
container_start_page | 7062 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Steinmetz, Michel O Jelesarov, Ilian Matousek, William M Honnappa, Srinivas Jahnke, Wolfgang Missimer, John H Frank, Sabine Alexandrescu, Andrei T Kammerer, Richard A |
description | Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical folding unit, termed "trigger sequence," that is indispensable for folding. Detailed knowledge of trigger sequences at the molecular level is thus key to a general understanding of coiled-coil formation. Using a multidisciplinary approach, we identify and characterize here the molecular determinants that specify the helical conformation of the monomeric early folding intermediate of the GCN4 coiled coil. We demonstrate that a network of hydrogen-bonding and electrostatic interactions stabilize the trigger-sequence helix. This network is rearranged in the final dimeric coiled-coil structure, and its destabilization significantly slows down GCN4 leucine zipper folding. Our findings provide a general explanation for the molecular mechanism of coiled-coil formation. |
doi_str_mv | 10.1073/pnas.0700321104 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1261120291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3</originalsourceid><addsrcrecordid>eNp9kT1PHDEQhq0oCC5ATZecKBDNwow_1usGCZ1IgkSUIlBbPq8Ni3zri72L4N_HK065QJFqCj_z6B2_hBwhnCFIdr7uTT4DCcAoIvAPZIagsKq5go9kBkBl1XDK98innB8BQIkGdskeSs4aqsSMnP6IwdkxmDRfmtzlefRzG7vg2moacx_Tygxd7A_Ijjchu8PN3Cd3X69uF9-rm5_frheXN5XlSg2Vt7XkrvW-Zm3jHbSm8Q2TVAjwDGEp24YtJRolBRVoADyvazTUUNsy6y3bJxev3vW4XLnWun5IJuh16lYmvehoOv32pe8e9H180tgIwQQrgpONIMXfo8uDXnXZuhBM7-KYtQROFdaqgMfvwMc4pr4cpykgQwGiLtD5K2RTzDk5_zcJgp4q0FMFeltB2fj87wFbfvPnBfiyAabNrY4XpKSraSFO_09oP4YwuOdhK_MmanOfuqzvfk3xAaREITj7A5h0otA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201315056</pqid></control><display><type>article</type><title>Molecular basis of coiled-coil formation</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Steinmetz, Michel O ; Jelesarov, Ilian ; Matousek, William M ; Honnappa, Srinivas ; Jahnke, Wolfgang ; Missimer, John H ; Frank, Sabine ; Alexandrescu, Andrei T ; Kammerer, Richard A</creator><creatorcontrib>Steinmetz, Michel O ; Jelesarov, Ilian ; Matousek, William M ; Honnappa, Srinivas ; Jahnke, Wolfgang ; Missimer, John H ; Frank, Sabine ; Alexandrescu, Andrei T ; Kammerer, Richard A</creatorcontrib><description>Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical folding unit, termed "trigger sequence," that is indispensable for folding. Detailed knowledge of trigger sequences at the molecular level is thus key to a general understanding of coiled-coil formation. Using a multidisciplinary approach, we identify and characterize here the molecular determinants that specify the helical conformation of the monomeric early folding intermediate of the GCN4 coiled coil. We demonstrate that a network of hydrogen-bonding and electrostatic interactions stabilize the trigger-sequence helix. This network is rearranged in the final dimeric coiled-coil structure, and its destabilization significantly slows down GCN4 leucine zipper folding. Our findings provide a general explanation for the molecular mechanism of coiled-coil formation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0700321104</identifier><identifier>PMID: 17438295</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Substitution ; Arginine ; Basic-Leucine Zipper Transcription Factors ; Biochemistry ; Biological Sciences ; Biophysics ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Hydrogen-Ion Concentration ; Kinetics ; Leucine Zippers ; Magnetic Resonance Spectroscopy ; Molecules ; Mutant Proteins - chemistry ; Peptides - chemistry ; Protein Folding ; Proteins ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Solutions ; Thermodynamics ; Transcription Factors - chemistry ; Transcription Factors - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-04, Vol.104 (17), p.7062-7067</ispartof><rights>Copyright National Academy of Sciences Apr 24, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3</citedby><cites>FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855353/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855353/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17438295$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinmetz, Michel O</creatorcontrib><creatorcontrib>Jelesarov, Ilian</creatorcontrib><creatorcontrib>Matousek, William M</creatorcontrib><creatorcontrib>Honnappa, Srinivas</creatorcontrib><creatorcontrib>Jahnke, Wolfgang</creatorcontrib><creatorcontrib>Missimer, John H</creatorcontrib><creatorcontrib>Frank, Sabine</creatorcontrib><creatorcontrib>Alexandrescu, Andrei T</creatorcontrib><creatorcontrib>Kammerer, Richard A</creatorcontrib><title>Molecular basis of coiled-coil formation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical folding unit, termed "trigger sequence," that is indispensable for folding. Detailed knowledge of trigger sequences at the molecular level is thus key to a general understanding of coiled-coil formation. Using a multidisciplinary approach, we identify and characterize here the molecular determinants that specify the helical conformation of the monomeric early folding intermediate of the GCN4 coiled coil. We demonstrate that a network of hydrogen-bonding and electrostatic interactions stabilize the trigger-sequence helix. This network is rearranged in the final dimeric coiled-coil structure, and its destabilization significantly slows down GCN4 leucine zipper folding. Our findings provide a general explanation for the molecular mechanism of coiled-coil formation.</description><subject>Amino Acid Substitution</subject><subject>Arginine</subject><subject>Basic-Leucine Zipper Transcription Factors</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Leucine Zippers</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecules</subject><subject>Mutant Proteins - chemistry</subject><subject>Peptides - chemistry</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Solutions</subject><subject>Thermodynamics</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kT1PHDEQhq0oCC5ATZecKBDNwow_1usGCZ1IgkSUIlBbPq8Ni3zri72L4N_HK065QJFqCj_z6B2_hBwhnCFIdr7uTT4DCcAoIvAPZIagsKq5go9kBkBl1XDK98innB8BQIkGdskeSs4aqsSMnP6IwdkxmDRfmtzlefRzG7vg2moacx_Tygxd7A_Ijjchu8PN3Cd3X69uF9-rm5_frheXN5XlSg2Vt7XkrvW-Zm3jHbSm8Q2TVAjwDGEp24YtJRolBRVoADyvazTUUNsy6y3bJxev3vW4XLnWun5IJuh16lYmvehoOv32pe8e9H180tgIwQQrgpONIMXfo8uDXnXZuhBM7-KYtQROFdaqgMfvwMc4pr4cpykgQwGiLtD5K2RTzDk5_zcJgp4q0FMFeltB2fj87wFbfvPnBfiyAabNrY4XpKSraSFO_09oP4YwuOdhK_MmanOfuqzvfk3xAaREITj7A5h0otA</recordid><startdate>20070424</startdate><enddate>20070424</enddate><creator>Steinmetz, Michel O</creator><creator>Jelesarov, Ilian</creator><creator>Matousek, William M</creator><creator>Honnappa, Srinivas</creator><creator>Jahnke, Wolfgang</creator><creator>Missimer, John H</creator><creator>Frank, Sabine</creator><creator>Alexandrescu, Andrei T</creator><creator>Kammerer, Richard A</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070424</creationdate><title>Molecular basis of coiled-coil formation</title><author>Steinmetz, Michel O ; Jelesarov, Ilian ; Matousek, William M ; Honnappa, Srinivas ; Jahnke, Wolfgang ; Missimer, John H ; Frank, Sabine ; Alexandrescu, Andrei T ; Kammerer, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Substitution</topic><topic>Arginine</topic><topic>Basic-Leucine Zipper Transcription Factors</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Leucine Zippers</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecules</topic><topic>Mutant Proteins - chemistry</topic><topic>Peptides - chemistry</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Solutions</topic><topic>Thermodynamics</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinmetz, Michel O</creatorcontrib><creatorcontrib>Jelesarov, Ilian</creatorcontrib><creatorcontrib>Matousek, William M</creatorcontrib><creatorcontrib>Honnappa, Srinivas</creatorcontrib><creatorcontrib>Jahnke, Wolfgang</creatorcontrib><creatorcontrib>Missimer, John H</creatorcontrib><creatorcontrib>Frank, Sabine</creatorcontrib><creatorcontrib>Alexandrescu, Andrei T</creatorcontrib><creatorcontrib>Kammerer, Richard A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinmetz, Michel O</au><au>Jelesarov, Ilian</au><au>Matousek, William M</au><au>Honnappa, Srinivas</au><au>Jahnke, Wolfgang</au><au>Missimer, John H</au><au>Frank, Sabine</au><au>Alexandrescu, Andrei T</au><au>Kammerer, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular basis of coiled-coil formation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-04-24</date><risdate>2007</risdate><volume>104</volume><issue>17</issue><spage>7062</spage><epage>7067</epage><pages>7062-7067</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Coiled coils have attracted considerable interest as design templates in a wide range of applications. Successful coiled-coil design strategies therefore require a detailed understanding of coiled-coil folding. One common feature shared by coiled coils is the presence of a short autonomous helical folding unit, termed "trigger sequence," that is indispensable for folding. Detailed knowledge of trigger sequences at the molecular level is thus key to a general understanding of coiled-coil formation. Using a multidisciplinary approach, we identify and characterize here the molecular determinants that specify the helical conformation of the monomeric early folding intermediate of the GCN4 coiled coil. We demonstrate that a network of hydrogen-bonding and electrostatic interactions stabilize the trigger-sequence helix. This network is rearranged in the final dimeric coiled-coil structure, and its destabilization significantly slows down GCN4 leucine zipper folding. Our findings provide a general explanation for the molecular mechanism of coiled-coil formation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17438295</pmid><doi>10.1073/pnas.0700321104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-04, Vol.104 (17), p.7062-7067 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1855353 |
source | PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection |
subjects | Amino Acid Substitution Arginine Basic-Leucine Zipper Transcription Factors Biochemistry Biological Sciences Biophysics DNA-Binding Proteins - chemistry DNA-Binding Proteins - metabolism Hydrogen-Ion Concentration Kinetics Leucine Zippers Magnetic Resonance Spectroscopy Molecules Mutant Proteins - chemistry Peptides - chemistry Protein Folding Proteins Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Solutions Thermodynamics Transcription Factors - chemistry Transcription Factors - metabolism |
title | Molecular basis of coiled-coil formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20basis%20of%20coiled-coil%20formation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Steinmetz,%20Michel%20O&rft.date=2007-04-24&rft.volume=104&rft.issue=17&rft.spage=7062&rft.epage=7067&rft.pages=7062-7067&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0700321104&rft_dat=%3Cproquest_pubme%3E1261120291%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-fc674edff63d8fe0da8f8372550f310b7d83b71a975251a00f4661a2a2cd3cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201315056&rft_id=info:pmid/17438295&rfr_iscdi=true |