Loading…
Exploring pleiotropy using principal components
A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low...
Saved in:
Published in: | BMC genetics 2003-12, Vol.4 Suppl 1 (S1), p.S53-S53, Article S53 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3 |
container_end_page | S53 |
container_issue | S1 |
container_start_page | S53 |
container_title | BMC genetics |
container_volume | 4 Suppl 1 |
creator | Bensen, Jeannette T Lange, Leslie A Langefeld, Carl D Chang, Bao-Li Bleecker, Eugene R Meyers, Deborah A Xu, Jianfeng |
description | A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself. |
doi_str_mv | 10.1186/1471-2156-4-S1-S53 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1866490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71548933</sourcerecordid><originalsourceid>FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEYmPwBzignbiVxflqekFC0_iQJnEYnKMkS0dR25SmRezf07JpbBKcYr12HtuvEboEfAMgxQRYDBEBLiIWLSBacHqEhjvxeC8eoLMQ3jGGWBJ2igbAkpgDgSGazL6q3NdZuRpXuct8U_tqPW7Dj9DJNqt0Pra-qHzpyiaco5NU58FdbN8Rer2fvUwfo_nzw9P0bh4ZJkgTOSOsI8LEjgO1IDGWUgNolnKaCpqCjrGxS4CUWG4IltRwLRJr4jQWWmo6QrcbbtWawi1t17vWuepGKnS9Vl5n6jBTZm9q5T9VZ4xgCe4Asw3AZP4fwGGm21H1hqneMMXUAlTnaMe53g5S-4_WhUYVWbAuz3XpfBtUDJzJhPaFZFNoax9C7dJdL8Cqv9ff9Kv9NX-_bA9EvwGJj5NG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71548933</pqid></control><display><type>article</type><title>Exploring pleiotropy using principal components</title><source>NCBI_PubMed Central(免费)</source><creator>Bensen, Jeannette T ; Lange, Leslie A ; Langefeld, Carl D ; Chang, Bao-Li ; Bleecker, Eugene R ; Meyers, Deborah A ; Xu, Jianfeng</creator><creatorcontrib>Bensen, Jeannette T ; Lange, Leslie A ; Langefeld, Carl D ; Chang, Bao-Li ; Bleecker, Eugene R ; Meyers, Deborah A ; Xu, Jianfeng</creatorcontrib><description>A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.</description><identifier>ISSN: 1471-2156</identifier><identifier>EISSN: 1471-2156</identifier><identifier>DOI: 10.1186/1471-2156-4-S1-S53</identifier><identifier>PMID: 14975121</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Blood Pressure - genetics ; Blood Pressure - physiology ; Body Mass Index ; Cardiovascular Diseases - blood ; Cardiovascular Diseases - epidemiology ; Cardiovascular Diseases - genetics ; Cardiovascular Diseases - physiopathology ; Cholesterol - blood ; Chromosome Mapping - methods ; Chromosome Mapping - statistics & numerical data ; Cohort Studies ; Computer Simulation - statistics & numerical data ; Female ; Gene Expression - genetics ; Genetic Linkage - genetics ; Humans ; Lipoproteins - blood ; Male ; Middle Aged ; Multivariate Analysis ; Phenotype ; Proceedings ; Quantitative Trait Loci - genetics ; Quantitative Trait, Heritable ; Triglycerides - blood</subject><ispartof>BMC genetics, 2003-12, Vol.4 Suppl 1 (S1), p.S53-S53, Article S53</ispartof><rights>Copyright © 2003 Bensen et al; licensee BioMed Central Ltd 2003 Bensen et al; licensee BioMed Central Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</citedby><cites>FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14975121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensen, Jeannette T</creatorcontrib><creatorcontrib>Lange, Leslie A</creatorcontrib><creatorcontrib>Langefeld, Carl D</creatorcontrib><creatorcontrib>Chang, Bao-Li</creatorcontrib><creatorcontrib>Bleecker, Eugene R</creatorcontrib><creatorcontrib>Meyers, Deborah A</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><title>Exploring pleiotropy using principal components</title><title>BMC genetics</title><addtitle>BMC Genet</addtitle><description>A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.</description><subject>Blood Pressure - genetics</subject><subject>Blood Pressure - physiology</subject><subject>Body Mass Index</subject><subject>Cardiovascular Diseases - blood</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Cardiovascular Diseases - genetics</subject><subject>Cardiovascular Diseases - physiopathology</subject><subject>Cholesterol - blood</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosome Mapping - statistics & numerical data</subject><subject>Cohort Studies</subject><subject>Computer Simulation - statistics & numerical data</subject><subject>Female</subject><subject>Gene Expression - genetics</subject><subject>Genetic Linkage - genetics</subject><subject>Humans</subject><subject>Lipoproteins - blood</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Phenotype</subject><subject>Proceedings</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Quantitative Trait, Heritable</subject><subject>Triglycerides - blood</subject><issn>1471-2156</issn><issn>1471-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhiMEYmPwBzignbiVxflqekFC0_iQJnEYnKMkS0dR25SmRezf07JpbBKcYr12HtuvEboEfAMgxQRYDBEBLiIWLSBacHqEhjvxeC8eoLMQ3jGGWBJ2igbAkpgDgSGazL6q3NdZuRpXuct8U_tqPW7Dj9DJNqt0Pra-qHzpyiaco5NU58FdbN8Rer2fvUwfo_nzw9P0bh4ZJkgTOSOsI8LEjgO1IDGWUgNolnKaCpqCjrGxS4CUWG4IltRwLRJr4jQWWmo6QrcbbtWawi1t17vWuepGKnS9Vl5n6jBTZm9q5T9VZ4xgCe4Asw3AZP4fwGGm21H1hqneMMXUAlTnaMe53g5S-4_WhUYVWbAuz3XpfBtUDJzJhPaFZFNoax9C7dJdL8Cqv9ff9Kv9NX-_bA9EvwGJj5NG</recordid><startdate>20031231</startdate><enddate>20031231</enddate><creator>Bensen, Jeannette T</creator><creator>Lange, Leslie A</creator><creator>Langefeld, Carl D</creator><creator>Chang, Bao-Li</creator><creator>Bleecker, Eugene R</creator><creator>Meyers, Deborah A</creator><creator>Xu, Jianfeng</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031231</creationdate><title>Exploring pleiotropy using principal components</title><author>Bensen, Jeannette T ; Lange, Leslie A ; Langefeld, Carl D ; Chang, Bao-Li ; Bleecker, Eugene R ; Meyers, Deborah A ; Xu, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Blood Pressure - genetics</topic><topic>Blood Pressure - physiology</topic><topic>Body Mass Index</topic><topic>Cardiovascular Diseases - blood</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Cardiovascular Diseases - genetics</topic><topic>Cardiovascular Diseases - physiopathology</topic><topic>Cholesterol - blood</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosome Mapping - statistics & numerical data</topic><topic>Cohort Studies</topic><topic>Computer Simulation - statistics & numerical data</topic><topic>Female</topic><topic>Gene Expression - genetics</topic><topic>Genetic Linkage - genetics</topic><topic>Humans</topic><topic>Lipoproteins - blood</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Phenotype</topic><topic>Proceedings</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Quantitative Trait, Heritable</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensen, Jeannette T</creatorcontrib><creatorcontrib>Lange, Leslie A</creatorcontrib><creatorcontrib>Langefeld, Carl D</creatorcontrib><creatorcontrib>Chang, Bao-Li</creatorcontrib><creatorcontrib>Bleecker, Eugene R</creatorcontrib><creatorcontrib>Meyers, Deborah A</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensen, Jeannette T</au><au>Lange, Leslie A</au><au>Langefeld, Carl D</au><au>Chang, Bao-Li</au><au>Bleecker, Eugene R</au><au>Meyers, Deborah A</au><au>Xu, Jianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring pleiotropy using principal components</atitle><jtitle>BMC genetics</jtitle><addtitle>BMC Genet</addtitle><date>2003-12-31</date><risdate>2003</risdate><volume>4 Suppl 1</volume><issue>S1</issue><spage>S53</spage><epage>S53</epage><pages>S53-S53</pages><artnum>S53</artnum><issn>1471-2156</issn><eissn>1471-2156</eissn><abstract>A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>14975121</pmid><doi>10.1186/1471-2156-4-S1-S53</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2156 |
ispartof | BMC genetics, 2003-12, Vol.4 Suppl 1 (S1), p.S53-S53, Article S53 |
issn | 1471-2156 1471-2156 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1866490 |
source | NCBI_PubMed Central(免费) |
subjects | Blood Pressure - genetics Blood Pressure - physiology Body Mass Index Cardiovascular Diseases - blood Cardiovascular Diseases - epidemiology Cardiovascular Diseases - genetics Cardiovascular Diseases - physiopathology Cholesterol - blood Chromosome Mapping - methods Chromosome Mapping - statistics & numerical data Cohort Studies Computer Simulation - statistics & numerical data Female Gene Expression - genetics Genetic Linkage - genetics Humans Lipoproteins - blood Male Middle Aged Multivariate Analysis Phenotype Proceedings Quantitative Trait Loci - genetics Quantitative Trait, Heritable Triglycerides - blood |
title | Exploring pleiotropy using principal components |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20pleiotropy%20using%20principal%20components&rft.jtitle=BMC%20genetics&rft.au=Bensen,%20Jeannette%20T&rft.date=2003-12-31&rft.volume=4%20Suppl%201&rft.issue=S1&rft.spage=S53&rft.epage=S53&rft.pages=S53-S53&rft.artnum=S53&rft.issn=1471-2156&rft.eissn=1471-2156&rft_id=info:doi/10.1186/1471-2156-4-S1-S53&rft_dat=%3Cproquest_pubme%3E71548933%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71548933&rft_id=info:pmid/14975121&rfr_iscdi=true |