Loading…

Exploring pleiotropy using principal components

A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low...

Full description

Saved in:
Bibliographic Details
Published in:BMC genetics 2003-12, Vol.4 Suppl 1 (S1), p.S53-S53, Article S53
Main Authors: Bensen, Jeannette T, Lange, Leslie A, Langefeld, Carl D, Chang, Bao-Li, Bleecker, Eugene R, Meyers, Deborah A, Xu, Jianfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3
cites cdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3
container_end_page S53
container_issue S1
container_start_page S53
container_title BMC genetics
container_volume 4 Suppl 1
creator Bensen, Jeannette T
Lange, Leslie A
Langefeld, Carl D
Chang, Bao-Li
Bleecker, Eugene R
Meyers, Deborah A
Xu, Jianfeng
description A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.
doi_str_mv 10.1186/1471-2156-4-S1-S53
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1866490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71548933</sourcerecordid><originalsourceid>FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</originalsourceid><addsrcrecordid>eNp1kU1PwzAMhiMEYmPwBzignbiVxflqekFC0_iQJnEYnKMkS0dR25SmRezf07JpbBKcYr12HtuvEboEfAMgxQRYDBEBLiIWLSBacHqEhjvxeC8eoLMQ3jGGWBJ2igbAkpgDgSGazL6q3NdZuRpXuct8U_tqPW7Dj9DJNqt0Pra-qHzpyiaco5NU58FdbN8Rer2fvUwfo_nzw9P0bh4ZJkgTOSOsI8LEjgO1IDGWUgNolnKaCpqCjrGxS4CUWG4IltRwLRJr4jQWWmo6QrcbbtWawi1t17vWuepGKnS9Vl5n6jBTZm9q5T9VZ4xgCe4Asw3AZP4fwGGm21H1hqneMMXUAlTnaMe53g5S-4_WhUYVWbAuz3XpfBtUDJzJhPaFZFNoax9C7dJdL8Cqv9ff9Kv9NX-_bA9EvwGJj5NG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71548933</pqid></control><display><type>article</type><title>Exploring pleiotropy using principal components</title><source>NCBI_PubMed Central(免费)</source><creator>Bensen, Jeannette T ; Lange, Leslie A ; Langefeld, Carl D ; Chang, Bao-Li ; Bleecker, Eugene R ; Meyers, Deborah A ; Xu, Jianfeng</creator><creatorcontrib>Bensen, Jeannette T ; Lange, Leslie A ; Langefeld, Carl D ; Chang, Bao-Li ; Bleecker, Eugene R ; Meyers, Deborah A ; Xu, Jianfeng</creatorcontrib><description>A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.</description><identifier>ISSN: 1471-2156</identifier><identifier>EISSN: 1471-2156</identifier><identifier>DOI: 10.1186/1471-2156-4-S1-S53</identifier><identifier>PMID: 14975121</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Blood Pressure - genetics ; Blood Pressure - physiology ; Body Mass Index ; Cardiovascular Diseases - blood ; Cardiovascular Diseases - epidemiology ; Cardiovascular Diseases - genetics ; Cardiovascular Diseases - physiopathology ; Cholesterol - blood ; Chromosome Mapping - methods ; Chromosome Mapping - statistics &amp; numerical data ; Cohort Studies ; Computer Simulation - statistics &amp; numerical data ; Female ; Gene Expression - genetics ; Genetic Linkage - genetics ; Humans ; Lipoproteins - blood ; Male ; Middle Aged ; Multivariate Analysis ; Phenotype ; Proceedings ; Quantitative Trait Loci - genetics ; Quantitative Trait, Heritable ; Triglycerides - blood</subject><ispartof>BMC genetics, 2003-12, Vol.4 Suppl 1 (S1), p.S53-S53, Article S53</ispartof><rights>Copyright © 2003 Bensen et al; licensee BioMed Central Ltd 2003 Bensen et al; licensee BioMed Central Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</citedby><cites>FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866490/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1866490/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14975121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bensen, Jeannette T</creatorcontrib><creatorcontrib>Lange, Leslie A</creatorcontrib><creatorcontrib>Langefeld, Carl D</creatorcontrib><creatorcontrib>Chang, Bao-Li</creatorcontrib><creatorcontrib>Bleecker, Eugene R</creatorcontrib><creatorcontrib>Meyers, Deborah A</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><title>Exploring pleiotropy using principal components</title><title>BMC genetics</title><addtitle>BMC Genet</addtitle><description>A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.</description><subject>Blood Pressure - genetics</subject><subject>Blood Pressure - physiology</subject><subject>Body Mass Index</subject><subject>Cardiovascular Diseases - blood</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Cardiovascular Diseases - genetics</subject><subject>Cardiovascular Diseases - physiopathology</subject><subject>Cholesterol - blood</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosome Mapping - statistics &amp; numerical data</subject><subject>Cohort Studies</subject><subject>Computer Simulation - statistics &amp; numerical data</subject><subject>Female</subject><subject>Gene Expression - genetics</subject><subject>Genetic Linkage - genetics</subject><subject>Humans</subject><subject>Lipoproteins - blood</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Multivariate Analysis</subject><subject>Phenotype</subject><subject>Proceedings</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Quantitative Trait, Heritable</subject><subject>Triglycerides - blood</subject><issn>1471-2156</issn><issn>1471-2156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PwzAMhiMEYmPwBzignbiVxflqekFC0_iQJnEYnKMkS0dR25SmRezf07JpbBKcYr12HtuvEboEfAMgxQRYDBEBLiIWLSBacHqEhjvxeC8eoLMQ3jGGWBJ2igbAkpgDgSGazL6q3NdZuRpXuct8U_tqPW7Dj9DJNqt0Pra-qHzpyiaco5NU58FdbN8Rer2fvUwfo_nzw9P0bh4ZJkgTOSOsI8LEjgO1IDGWUgNolnKaCpqCjrGxS4CUWG4IltRwLRJr4jQWWmo6QrcbbtWawi1t17vWuepGKnS9Vl5n6jBTZm9q5T9VZ4xgCe4Asw3AZP4fwGGm21H1hqneMMXUAlTnaMe53g5S-4_WhUYVWbAuz3XpfBtUDJzJhPaFZFNoax9C7dJdL8Cqv9ff9Kv9NX-_bA9EvwGJj5NG</recordid><startdate>20031231</startdate><enddate>20031231</enddate><creator>Bensen, Jeannette T</creator><creator>Lange, Leslie A</creator><creator>Langefeld, Carl D</creator><creator>Chang, Bao-Li</creator><creator>Bleecker, Eugene R</creator><creator>Meyers, Deborah A</creator><creator>Xu, Jianfeng</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031231</creationdate><title>Exploring pleiotropy using principal components</title><author>Bensen, Jeannette T ; Lange, Leslie A ; Langefeld, Carl D ; Chang, Bao-Li ; Bleecker, Eugene R ; Meyers, Deborah A ; Xu, Jianfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Blood Pressure - genetics</topic><topic>Blood Pressure - physiology</topic><topic>Body Mass Index</topic><topic>Cardiovascular Diseases - blood</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Cardiovascular Diseases - genetics</topic><topic>Cardiovascular Diseases - physiopathology</topic><topic>Cholesterol - blood</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosome Mapping - statistics &amp; numerical data</topic><topic>Cohort Studies</topic><topic>Computer Simulation - statistics &amp; numerical data</topic><topic>Female</topic><topic>Gene Expression - genetics</topic><topic>Genetic Linkage - genetics</topic><topic>Humans</topic><topic>Lipoproteins - blood</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Multivariate Analysis</topic><topic>Phenotype</topic><topic>Proceedings</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Quantitative Trait, Heritable</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bensen, Jeannette T</creatorcontrib><creatorcontrib>Lange, Leslie A</creatorcontrib><creatorcontrib>Langefeld, Carl D</creatorcontrib><creatorcontrib>Chang, Bao-Li</creatorcontrib><creatorcontrib>Bleecker, Eugene R</creatorcontrib><creatorcontrib>Meyers, Deborah A</creatorcontrib><creatorcontrib>Xu, Jianfeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bensen, Jeannette T</au><au>Lange, Leslie A</au><au>Langefeld, Carl D</au><au>Chang, Bao-Li</au><au>Bleecker, Eugene R</au><au>Meyers, Deborah A</au><au>Xu, Jianfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring pleiotropy using principal components</atitle><jtitle>BMC genetics</jtitle><addtitle>BMC Genet</addtitle><date>2003-12-31</date><risdate>2003</risdate><volume>4 Suppl 1</volume><issue>S1</issue><spage>S53</spage><epage>S53</epage><pages>S53-S53</pages><artnum>S53</artnum><issn>1471-2156</issn><eissn>1471-2156</eissn><abstract>A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>14975121</pmid><doi>10.1186/1471-2156-4-S1-S53</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-2156
ispartof BMC genetics, 2003-12, Vol.4 Suppl 1 (S1), p.S53-S53, Article S53
issn 1471-2156
1471-2156
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1866490
source NCBI_PubMed Central(免费)
subjects Blood Pressure - genetics
Blood Pressure - physiology
Body Mass Index
Cardiovascular Diseases - blood
Cardiovascular Diseases - epidemiology
Cardiovascular Diseases - genetics
Cardiovascular Diseases - physiopathology
Cholesterol - blood
Chromosome Mapping - methods
Chromosome Mapping - statistics & numerical data
Cohort Studies
Computer Simulation - statistics & numerical data
Female
Gene Expression - genetics
Genetic Linkage - genetics
Humans
Lipoproteins - blood
Male
Middle Aged
Multivariate Analysis
Phenotype
Proceedings
Quantitative Trait Loci - genetics
Quantitative Trait, Heritable
Triglycerides - blood
title Exploring pleiotropy using principal components
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20pleiotropy%20using%20principal%20components&rft.jtitle=BMC%20genetics&rft.au=Bensen,%20Jeannette%20T&rft.date=2003-12-31&rft.volume=4%20Suppl%201&rft.issue=S1&rft.spage=S53&rft.epage=S53&rft.pages=S53-S53&rft.artnum=S53&rft.issn=1471-2156&rft.eissn=1471-2156&rft_id=info:doi/10.1186/1471-2156-4-S1-S53&rft_dat=%3Cproquest_pubme%3E71548933%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b462t-eb6ce26b7e513c180088a11a4f53f63f1a70bcd11f2c5b2083b5a69cb7f76a8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=71548933&rft_id=info:pmid/14975121&rfr_iscdi=true