Loading…

Proteolytic Degradation of SCOP in the Hippocampus Contributes to Activation of MAP Kinase and Memory

Because activation of ERK1/2 MAP kinase (MAPK) is critical for hippocampus-dependent memory, there is considerable interest in mechanisms for regulation of MAPK during memory formation. Here we report that MAPK and CREB-mediated transcription are negatively regulated by SCOP (suprachiasmatic nucleus...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2007-03, Vol.128 (6), p.1219-1229
Main Authors: Shimizu, Kimiko, Phan, Trongha, Mansuy, Isabelle M., Storm, Daniel R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because activation of ERK1/2 MAP kinase (MAPK) is critical for hippocampus-dependent memory, there is considerable interest in mechanisms for regulation of MAPK during memory formation. Here we report that MAPK and CREB-mediated transcription are negatively regulated by SCOP (suprachiasmatic nucleus [SCN] circadian oscillatory protein) and that SCOP is proteolyzed by calpain when hippocampal neurons are stimulated by brain-derived neurotrophic factor (BDNF), KCl depolarization, or NMDA. Moreover, training for novel object memory decreases SCOP in the hippocampus. To determine if hippocampus-dependent memory is influenced by SCOP in vivo, we generated a transgenic mouse strain for the inducible overexpression of SCOP in the forebrain. Overexpression of SCOP completely blocked memory for novel objects. We conclude that degradation of SCOP by calpain contributes to activation of MAPK during memory formation.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2006.12.047