Loading…

ApoE deficiency compromises the blood brain barrier especially after injury

Apolipoprotein E (apoE) mediates lipoprotein uptake by receptors such as the LDL receptor (LDLR). The isoform apoE4 has been linked to Alzheimer's disease and to poor outcomes after brain injury. Astrocytes that induce blood brain barrier (BBB) properties in endothelium also produce apoE. We de...

Full description

Saved in:
Bibliographic Details
Published in:Molecular medicine (Cambridge, Mass.) Mass.), 2001-12, Vol.7 (12), p.810-815
Main Authors: Methia, N, André, P, Hafezi-Moghadam, A, Economopoulos, M, Thomas, K L, Wagner, D D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53
cites cdi_FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53
container_end_page 815
container_issue 12
container_start_page 810
container_title Molecular medicine (Cambridge, Mass.)
container_volume 7
creator Methia, N
André, P
Hafezi-Moghadam, A
Economopoulos, M
Thomas, K L
Wagner, D D
description Apolipoprotein E (apoE) mediates lipoprotein uptake by receptors such as the LDL receptor (LDLR). The isoform apoE4 has been linked to Alzheimer's disease and to poor outcomes after brain injury. Astrocytes that induce blood brain barrier (BBB) properties in endothelium also produce apoE. We decided to investigate the role of apoE in BBB function and in the restoration of BBB after brain injury. Wild-type (WT) mice and mice deficient in apoE or LDLR were fed normal chow or diets rich in fat and cholesterol. The BBB leakage was determined through injection of Evans blue dye and measurement of the amount of dye extravasated in the brains 3 hours later. Brain injury was induced by applying dry ice directly onto the excised parietal region of the brain. The mice were given 7 days to recover. In some experiments, peroxidase was infused to observe the site of leakage by histology. We found 70% more spontaneous leakage of injected Evans blue dye in the brains of apoE-/- mice than in wild type. This increase in permeability appeared selective for the brain. The leaky BBB in apoE-/- mice may provide an explanation for the neurological deficits seen in these animals. In an established model of BBB leakage induced by trauma (cold injury), the apoE-/- mice showed even more compromised BBB function, compared with WT mice, suggesting that apoE is important for BBB recovery. No deficit in BBB was observed in injured LDLR-/- mice, even on Western Diet. In contrast, higher plasma cholesterol levels in apoE-/- mice further increased BBB leakage after injury. We extracted 5x more Evans blue from these brains than from WT. In the injury model, injection of peroxidase resulted in prominent retention of this protein in the cortex of apoE-/- but not in WT. Our results show that the combination of loss of apoE function with high plasma cholesterol and especially brain injury results in dramatic BBB defects in the cortex and may explain in part the importance of apoE in Alzheimer's disease and in successful recovery from brain injury.
doi_str_mv 10.1007/bf03401973
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1950012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72439294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EoqVw4QFQThyQAnZsx8kFCaoWEJW4wNlynDV1lcTBTpDy9qRq-TvtavfT7OwgdE7wNcFY3BQGU4ZJLugBmhKeZDFNeXY49likMeGcTNBJCBuME8IZP0YTQjLGsjSfoue71i2iEozVFho9RNrVrXe1DRCibg1RUTlXRoVXtokK5b0FH0FoQVtVVUOkTDcObLPp_XCKjoyqApzt6wy9LRev88d49fLwNL9bxZox3MUACTECYDQBDGiRlTgHxQmAFkkpcpOl22ewSUuSckGzTBMlUkWp4TgvOJ2h251u2xc1lBqazqtKtt7Wyg_SKSv_bxq7lu_uU5KcY0ySUeByL-DdRw-hk-O_GqpKNeD6IEXCaJ7kbASvdqD2LgQP5ucIwXKbvbxffmc_whd_bf2i-7DpF5_3gCI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72439294</pqid></control><display><type>article</type><title>ApoE deficiency compromises the blood brain barrier especially after injury</title><source>PubMed Central</source><creator>Methia, N ; André, P ; Hafezi-Moghadam, A ; Economopoulos, M ; Thomas, K L ; Wagner, D D</creator><creatorcontrib>Methia, N ; André, P ; Hafezi-Moghadam, A ; Economopoulos, M ; Thomas, K L ; Wagner, D D</creatorcontrib><description>Apolipoprotein E (apoE) mediates lipoprotein uptake by receptors such as the LDL receptor (LDLR). The isoform apoE4 has been linked to Alzheimer's disease and to poor outcomes after brain injury. Astrocytes that induce blood brain barrier (BBB) properties in endothelium also produce apoE. We decided to investigate the role of apoE in BBB function and in the restoration of BBB after brain injury. Wild-type (WT) mice and mice deficient in apoE or LDLR were fed normal chow or diets rich in fat and cholesterol. The BBB leakage was determined through injection of Evans blue dye and measurement of the amount of dye extravasated in the brains 3 hours later. Brain injury was induced by applying dry ice directly onto the excised parietal region of the brain. The mice were given 7 days to recover. In some experiments, peroxidase was infused to observe the site of leakage by histology. We found 70% more spontaneous leakage of injected Evans blue dye in the brains of apoE-/- mice than in wild type. This increase in permeability appeared selective for the brain. The leaky BBB in apoE-/- mice may provide an explanation for the neurological deficits seen in these animals. In an established model of BBB leakage induced by trauma (cold injury), the apoE-/- mice showed even more compromised BBB function, compared with WT mice, suggesting that apoE is important for BBB recovery. No deficit in BBB was observed in injured LDLR-/- mice, even on Western Diet. In contrast, higher plasma cholesterol levels in apoE-/- mice further increased BBB leakage after injury. We extracted 5x more Evans blue from these brains than from WT. In the injury model, injection of peroxidase resulted in prominent retention of this protein in the cortex of apoE-/- but not in WT. Our results show that the combination of loss of apoE function with high plasma cholesterol and especially brain injury results in dramatic BBB defects in the cortex and may explain in part the importance of apoE in Alzheimer's disease and in successful recovery from brain injury.</description><identifier>ISSN: 1076-1551</identifier><identifier>EISSN: 1528-3658</identifier><identifier>DOI: 10.1007/bf03401973</identifier><identifier>PMID: 11844869</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Apolipoproteins E - deficiency ; Apolipoproteins E - physiology ; Blood-Brain Barrier - physiology ; Brain Injuries - physiopathology ; Capillary Permeability ; Cholesterol - blood ; Mice ; Mice, Inbred C57BL ; Mice, Knockout</subject><ispartof>Molecular medicine (Cambridge, Mass.), 2001-12, Vol.7 (12), p.810-815</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53</citedby><cites>FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950012/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950012/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11844869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Methia, N</creatorcontrib><creatorcontrib>André, P</creatorcontrib><creatorcontrib>Hafezi-Moghadam, A</creatorcontrib><creatorcontrib>Economopoulos, M</creatorcontrib><creatorcontrib>Thomas, K L</creatorcontrib><creatorcontrib>Wagner, D D</creatorcontrib><title>ApoE deficiency compromises the blood brain barrier especially after injury</title><title>Molecular medicine (Cambridge, Mass.)</title><addtitle>Mol Med</addtitle><description>Apolipoprotein E (apoE) mediates lipoprotein uptake by receptors such as the LDL receptor (LDLR). The isoform apoE4 has been linked to Alzheimer's disease and to poor outcomes after brain injury. Astrocytes that induce blood brain barrier (BBB) properties in endothelium also produce apoE. We decided to investigate the role of apoE in BBB function and in the restoration of BBB after brain injury. Wild-type (WT) mice and mice deficient in apoE or LDLR were fed normal chow or diets rich in fat and cholesterol. The BBB leakage was determined through injection of Evans blue dye and measurement of the amount of dye extravasated in the brains 3 hours later. Brain injury was induced by applying dry ice directly onto the excised parietal region of the brain. The mice were given 7 days to recover. In some experiments, peroxidase was infused to observe the site of leakage by histology. We found 70% more spontaneous leakage of injected Evans blue dye in the brains of apoE-/- mice than in wild type. This increase in permeability appeared selective for the brain. The leaky BBB in apoE-/- mice may provide an explanation for the neurological deficits seen in these animals. In an established model of BBB leakage induced by trauma (cold injury), the apoE-/- mice showed even more compromised BBB function, compared with WT mice, suggesting that apoE is important for BBB recovery. No deficit in BBB was observed in injured LDLR-/- mice, even on Western Diet. In contrast, higher plasma cholesterol levels in apoE-/- mice further increased BBB leakage after injury. We extracted 5x more Evans blue from these brains than from WT. In the injury model, injection of peroxidase resulted in prominent retention of this protein in the cortex of apoE-/- but not in WT. Our results show that the combination of loss of apoE function with high plasma cholesterol and especially brain injury results in dramatic BBB defects in the cortex and may explain in part the importance of apoE in Alzheimer's disease and in successful recovery from brain injury.</description><subject>Animals</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - physiology</subject><subject>Blood-Brain Barrier - physiology</subject><subject>Brain Injuries - physiopathology</subject><subject>Capillary Permeability</subject><subject>Cholesterol - blood</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><issn>1076-1551</issn><issn>1528-3658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpVkM1OwzAQhC0EoqVw4QFQThyQAnZsx8kFCaoWEJW4wNlynDV1lcTBTpDy9qRq-TvtavfT7OwgdE7wNcFY3BQGU4ZJLugBmhKeZDFNeXY49likMeGcTNBJCBuME8IZP0YTQjLGsjSfoue71i2iEozVFho9RNrVrXe1DRCibg1RUTlXRoVXtokK5b0FH0FoQVtVVUOkTDcObLPp_XCKjoyqApzt6wy9LRev88d49fLwNL9bxZox3MUACTECYDQBDGiRlTgHxQmAFkkpcpOl22ewSUuSckGzTBMlUkWp4TgvOJ2h251u2xc1lBqazqtKtt7Wyg_SKSv_bxq7lu_uU5KcY0ySUeByL-DdRw-hk-O_GqpKNeD6IEXCaJ7kbASvdqD2LgQP5ucIwXKbvbxffmc_whd_bf2i-7DpF5_3gCI</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Methia, N</creator><creator>André, P</creator><creator>Hafezi-Moghadam, A</creator><creator>Economopoulos, M</creator><creator>Thomas, K L</creator><creator>Wagner, D D</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011201</creationdate><title>ApoE deficiency compromises the blood brain barrier especially after injury</title><author>Methia, N ; André, P ; Hafezi-Moghadam, A ; Economopoulos, M ; Thomas, K L ; Wagner, D D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - physiology</topic><topic>Blood-Brain Barrier - physiology</topic><topic>Brain Injuries - physiopathology</topic><topic>Capillary Permeability</topic><topic>Cholesterol - blood</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Methia, N</creatorcontrib><creatorcontrib>André, P</creatorcontrib><creatorcontrib>Hafezi-Moghadam, A</creatorcontrib><creatorcontrib>Economopoulos, M</creatorcontrib><creatorcontrib>Thomas, K L</creatorcontrib><creatorcontrib>Wagner, D D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular medicine (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Methia, N</au><au>André, P</au><au>Hafezi-Moghadam, A</au><au>Economopoulos, M</au><au>Thomas, K L</au><au>Wagner, D D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ApoE deficiency compromises the blood brain barrier especially after injury</atitle><jtitle>Molecular medicine (Cambridge, Mass.)</jtitle><addtitle>Mol Med</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>7</volume><issue>12</issue><spage>810</spage><epage>815</epage><pages>810-815</pages><issn>1076-1551</issn><eissn>1528-3658</eissn><abstract>Apolipoprotein E (apoE) mediates lipoprotein uptake by receptors such as the LDL receptor (LDLR). The isoform apoE4 has been linked to Alzheimer's disease and to poor outcomes after brain injury. Astrocytes that induce blood brain barrier (BBB) properties in endothelium also produce apoE. We decided to investigate the role of apoE in BBB function and in the restoration of BBB after brain injury. Wild-type (WT) mice and mice deficient in apoE or LDLR were fed normal chow or diets rich in fat and cholesterol. The BBB leakage was determined through injection of Evans blue dye and measurement of the amount of dye extravasated in the brains 3 hours later. Brain injury was induced by applying dry ice directly onto the excised parietal region of the brain. The mice were given 7 days to recover. In some experiments, peroxidase was infused to observe the site of leakage by histology. We found 70% more spontaneous leakage of injected Evans blue dye in the brains of apoE-/- mice than in wild type. This increase in permeability appeared selective for the brain. The leaky BBB in apoE-/- mice may provide an explanation for the neurological deficits seen in these animals. In an established model of BBB leakage induced by trauma (cold injury), the apoE-/- mice showed even more compromised BBB function, compared with WT mice, suggesting that apoE is important for BBB recovery. No deficit in BBB was observed in injured LDLR-/- mice, even on Western Diet. In contrast, higher plasma cholesterol levels in apoE-/- mice further increased BBB leakage after injury. We extracted 5x more Evans blue from these brains than from WT. In the injury model, injection of peroxidase resulted in prominent retention of this protein in the cortex of apoE-/- but not in WT. Our results show that the combination of loss of apoE function with high plasma cholesterol and especially brain injury results in dramatic BBB defects in the cortex and may explain in part the importance of apoE in Alzheimer's disease and in successful recovery from brain injury.</abstract><cop>England</cop><pmid>11844869</pmid><doi>10.1007/bf03401973</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-1551
ispartof Molecular medicine (Cambridge, Mass.), 2001-12, Vol.7 (12), p.810-815
issn 1076-1551
1528-3658
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1950012
source PubMed Central
subjects Animals
Apolipoproteins E - deficiency
Apolipoproteins E - physiology
Blood-Brain Barrier - physiology
Brain Injuries - physiopathology
Capillary Permeability
Cholesterol - blood
Mice
Mice, Inbred C57BL
Mice, Knockout
title ApoE deficiency compromises the blood brain barrier especially after injury
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ApoE%20deficiency%20compromises%20the%20blood%20brain%20barrier%20especially%20after%20injury&rft.jtitle=Molecular%20medicine%20(Cambridge,%20Mass.)&rft.au=Methia,%20N&rft.date=2001-12-01&rft.volume=7&rft.issue=12&rft.spage=810&rft.epage=815&rft.pages=810-815&rft.issn=1076-1551&rft.eissn=1528-3658&rft_id=info:doi/10.1007/bf03401973&rft_dat=%3Cproquest_pubme%3E72439294%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c440t-ee21f7ee118e4e3b8d09ea51eec72d79f8601970f6d1657388c1a76a33f509b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72439294&rft_id=info:pmid/11844869&rfr_iscdi=true