Loading…
Genetic Mapping in the Presence of Genotyping Errors
Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Ea...
Saved in:
Published in: | Genetics (Austin) 2007-08, Vol.176 (4), p.2521-2527 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63 |
container_end_page | 2527 |
container_issue | 4 |
container_start_page | 2521 |
container_title | Genetics (Austin) |
container_volume | 176 |
creator | Cartwright, Dustin A Troggio, Michela Velasco, Riccardo Gutin, Alexander |
description | Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders. |
doi_str_mv | 10.1534/genetics.106.063982 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1950651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1330334131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63</originalsourceid><addsrcrecordid>eNpdkU9PGzEQxa0KBCnwCSqhVQ_taYPHf9eXSgilaSUQHOBseXcnidFmHexNI759TTdtgdNI837z9EaPkE9ApyC5uFhij4Nv0hSomlLFTcU-kAkYwUumOByQCaWgSqU5HJOPKT1SSpWR1RE5Bs205lpMiJiPLsWN22x8vyx8XwwrLO4iJuwbLMKiyEgYnv-osxhDTKfkcOG6hGf7eUIevs_ur36U17fzn1eX12UjWTWUAkALowEZgxyvrrSUThqmGUhnRA2udrQVbQ4jtKpbZypsObaqbVklFoqfkG-j72Zbr7FtsB-i6-wm-rWLzzY4b98qvV_ZZfhlwUiqJGSDL3uDGJ62mAa79qnBrnM9hm2yqgKjGIgMfn4HPoZt7PNzNsvApdQvcfgINTGkFHHxLwlQ-1KJ_VtJXig7VpKvzl8_8f9m30EGvo7Ayi9XOx_RprXruoyD3e12oJUVlkkG_DdAOZYN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214135576</pqid></control><display><type>article</type><title>Genetic Mapping in the Presence of Genotyping Errors</title><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><source>Freely Accessible Science Journals at publisher websites</source><creator>Cartwright, Dustin A ; Troggio, Michela ; Velasco, Riccardo ; Gutin, Alexander</creator><creatorcontrib>Cartwright, Dustin A ; Troggio, Michela ; Velasco, Riccardo ; Gutin, Alexander</creatorcontrib><description>Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.106.063982</identifier><identifier>PMID: 17277374</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Advantages ; Algorithms ; Chromosome Mapping - statistics & numerical data ; Data Interpretation, Statistical ; Errors ; Genetic Markers ; Genetics ; Genotype ; Genotype & phenotype ; Investigations ; Likelihood Functions ; Methods ; Models, Genetic ; Monte Carlo Method ; Software ; Studies</subject><ispartof>Genetics (Austin), 2007-08, Vol.176 (4), p.2521-2527</ispartof><rights>Copyright Genetics Society of America Aug 2007</rights><rights>Copyright © 2007 by the Genetics Society of America 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63</citedby><cites>FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17277374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cartwright, Dustin A</creatorcontrib><creatorcontrib>Troggio, Michela</creatorcontrib><creatorcontrib>Velasco, Riccardo</creatorcontrib><creatorcontrib>Gutin, Alexander</creatorcontrib><title>Genetic Mapping in the Presence of Genotyping Errors</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.</description><subject>Advantages</subject><subject>Algorithms</subject><subject>Chromosome Mapping - statistics & numerical data</subject><subject>Data Interpretation, Statistical</subject><subject>Errors</subject><subject>Genetic Markers</subject><subject>Genetics</subject><subject>Genotype</subject><subject>Genotype & phenotype</subject><subject>Investigations</subject><subject>Likelihood Functions</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Monte Carlo Method</subject><subject>Software</subject><subject>Studies</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpdkU9PGzEQxa0KBCnwCSqhVQ_taYPHf9eXSgilaSUQHOBseXcnidFmHexNI759TTdtgdNI837z9EaPkE9ApyC5uFhij4Nv0hSomlLFTcU-kAkYwUumOByQCaWgSqU5HJOPKT1SSpWR1RE5Bs205lpMiJiPLsWN22x8vyx8XwwrLO4iJuwbLMKiyEgYnv-osxhDTKfkcOG6hGf7eUIevs_ur36U17fzn1eX12UjWTWUAkALowEZgxyvrrSUThqmGUhnRA2udrQVbQ4jtKpbZypsObaqbVklFoqfkG-j72Zbr7FtsB-i6-wm-rWLzzY4b98qvV_ZZfhlwUiqJGSDL3uDGJ62mAa79qnBrnM9hm2yqgKjGIgMfn4HPoZt7PNzNsvApdQvcfgINTGkFHHxLwlQ-1KJ_VtJXig7VpKvzl8_8f9m30EGvo7Ayi9XOx_RprXruoyD3e12oJUVlkkG_DdAOZYN</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Cartwright, Dustin A</creator><creator>Troggio, Michela</creator><creator>Velasco, Riccardo</creator><creator>Gutin, Alexander</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2007 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070801</creationdate><title>Genetic Mapping in the Presence of Genotyping Errors</title><author>Cartwright, Dustin A ; Troggio, Michela ; Velasco, Riccardo ; Gutin, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Advantages</topic><topic>Algorithms</topic><topic>Chromosome Mapping - statistics & numerical data</topic><topic>Data Interpretation, Statistical</topic><topic>Errors</topic><topic>Genetic Markers</topic><topic>Genetics</topic><topic>Genotype</topic><topic>Genotype & phenotype</topic><topic>Investigations</topic><topic>Likelihood Functions</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Monte Carlo Method</topic><topic>Software</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cartwright, Dustin A</creatorcontrib><creatorcontrib>Troggio, Michela</creatorcontrib><creatorcontrib>Velasco, Riccardo</creatorcontrib><creatorcontrib>Gutin, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cartwright, Dustin A</au><au>Troggio, Michela</au><au>Velasco, Riccardo</au><au>Gutin, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Mapping in the Presence of Genotyping Errors</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>176</volume><issue>4</issue><spage>2521</spage><epage>2527</epage><pages>2521-2527</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Genetic maps are built using the genotypes of many related individuals. Genotyping errors in these data sets can distort genetic maps, especially by inflating the distances. We have extended the traditional likelihood model used for genetic mapping to include the possibility of genotyping errors. Each individual marker is assigned an error rate, which is inferred from the data, just as the genetic distances are. We have developed a software package, called TMAP, which uses this model to find maximum-likelihood maps for phase-known pedigrees. We have tested our methods using a data set in Vitis and on simulated data and confirmed that our method dramatically reduces the inflationary effect caused by increasing the number of markers and leads to more accurate orders.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>17277374</pmid><doi>10.1534/genetics.106.063982</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2007-08, Vol.176 (4), p.2521-2527 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1950651 |
source | Oxford Journals Online; Alma/SFX Local Collection; Freely Accessible Science Journals at publisher websites |
subjects | Advantages Algorithms Chromosome Mapping - statistics & numerical data Data Interpretation, Statistical Errors Genetic Markers Genetics Genotype Genotype & phenotype Investigations Likelihood Functions Methods Models, Genetic Monte Carlo Method Software Studies |
title | Genetic Mapping in the Presence of Genotyping Errors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Mapping%20in%20the%20Presence%20of%20Genotyping%20Errors&rft.jtitle=Genetics%20(Austin)&rft.au=Cartwright,%20Dustin%20A&rft.date=2007-08-01&rft.volume=176&rft.issue=4&rft.spage=2521&rft.epage=2527&rft.pages=2521-2527&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.106.063982&rft_dat=%3Cproquest_pubme%3E1330334131%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-41174971e221639b8755a5927215a94b1aba0d4d727476bda98ed3ed6dd284f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214135576&rft_id=info:pmid/17277374&rfr_iscdi=true |