Loading…
Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding
Human ESCRT-I is a multiprotein complex that plays essential roles in HIV budding and endosomal protein sorting. All ESCRT-I complexes contain three common subunits (TSG101, VPS28, and VPS37), and a fourth subunit of yeast ESCRT-I was recently identified (Mvb12p). We now demonstrate that two related...
Saved in:
Published in: | Cell host & microbe 2007-07, Vol.2 (1), p.41-53 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human ESCRT-I is a multiprotein complex that plays essential roles in HIV budding and endosomal protein sorting. All ESCRT-I complexes contain three common subunits (TSG101, VPS28, and VPS37), and a fourth subunit of yeast ESCRT-I was recently identified (Mvb12p). We now demonstrate that two related human proteins (MVB12A and MVB12B) constitute the fourth class of metazoan ESCRT-I subunits, despite lacking identifiable sequence homology to Mvb12p. Hydrodynamic studies indicate that soluble human ESCRT-I complexes contain one copy of each of the four subunit types. MVB12 subunits associate with the core region of the binary TSG101-VPS37 complex through conserved C-terminal sequence elements. Both MVB12 depletion and overexpression inhibit HIV-1 infectivity and induce unusual viral assembly defects, including aberrant virion morphologies and altered viral Gag protein processing. Taken together, these studies define the composition of human ESCRT-I complexes and indicate that the MVB12 subunits play a unique role in regulating ESCRT-mediated virus budding. |
---|---|
ISSN: | 1931-3128 1934-6069 |
DOI: | 10.1016/j.chom.2007.06.003 |