Loading…

Linking double-stranded DNA breaks to the recombination activating gene complex directs repair to the nonhomologous end-joining pathway

Two major DNA repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), repair double-stranded DNA breaks (DSBs) in all eukaryotes. Additionally, several alternative end-joining pathways (or subpathways) have been reported that characteristically use short-sequence homolog...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2007-10, Vol.104 (43), p.17046-17051
Main Authors: Cui, Xiaoping, Meek, Katheryn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two major DNA repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), repair double-stranded DNA breaks (DSBs) in all eukaryotes. Additionally, several alternative end-joining pathways (or subpathways) have been reported that characteristically use short-sequence homologies at the DNA ends to facilitate joining. How a cell chooses which DNA repair pathway to use (at any particular DSB) is a central and largely unanswered question. For one type of DSB, there is apparently no choice. DSBs mediated by the lymphocyte-specific recombination activating gene (RAG) endonuclease are repaired virtually exclusively by NHEJ. Here we demonstrate that non-RAG-mediated DSBs can be similarly forced into the NHEJ pathway by physical association with the RAG endonuclease.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0610928104