Loading…
The Fine Structure and Electrophysiology of Heart Muscle Cell Injury
Injured frog heart cells electrically uncouple from their uninjured neighbors within 30 min after injury. This uncoupling process can be shown by the disappearance of an injury potential measured between such injured and uninjured cells. In the present study, the time course of the decline of injury...
Saved in:
Published in: | The Journal of cell biology 1970-09, Vol.46 (3), p.455-476 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Injured frog heart cells electrically uncouple from their uninjured neighbors within 30 min after injury. This uncoupling process can be shown by the disappearance of an injury potential measured between such injured and uninjured cells. In the present study, the time course of the decline of injury potentials, and thus of electrical uncoupling, in bull-frog atrial trabeculae was determined. Tissue was fixed with glutaraldehyde and osmium tetroxide at various times after injury to determine the morphological changes which accompany this uncoupling process. In some cases, ruthenium red was included in the fixatives. Normal atrial cells are long and narrow, with intercellular junctions located along the lateral surfaces of the cells. Two types of intercellular junctions have been observed: cardiac adhesion plaques (CAPs), and close junctions. Close junctions occur only infrequently. Ruthenium red penetrates all around the cells, leaving only small areas within the CAPs unstained. After injury, the cells are very dense and the myofilaments disarranged. Both types of intercellular junction remain intact, and only slight changes within CAPs are observed. The results are discussed in relation to current concepts of intercellular communication. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.46.3.455 |