Loading…

Induction of nitrogen-fixing nodules on clover requires only 32 kilobase pairs of DNA from the Rhizobium trifolii symbiosis plasmid

Overlapping subclones from the Rhizobium trifolii symbiosis plasmid pRt843a were generated by using in vivo and in vitro methods. Subclones were assayed for symbiotic phenotype by introducing them into a derivative of R. trifolii ANU843 cured of its symbiosis plasmid and testing the transconjugant s...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Bacteriology 1988-09, Vol.170 (9), p.3793-3802
Main Authors: Innes, R.W, Hirose, M.A, Kuempel, P.L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Overlapping subclones from the Rhizobium trifolii symbiosis plasmid pRt843a were generated by using in vivo and in vitro methods. Subclones were assayed for symbiotic phenotype by introducing them into a derivative of R. trifolii ANU843 cured of its symbiosis plasmid and testing the transconjugant strains for the ability to induce nitrogen-fixing nodules on clover. One subclone spanning 32 kilobase pairs (kb) of DNA from pRt843a was found to restore nitrogen fixation ability. This subclone included all known nodulation genes of R. trifolii ANU843 and the nitrogenase structural genes nifHDK. In addition, regions homologous to fixABC, nifA, nifB, nifE, and nifN genes of other nitrogen-fixing bacteria were identified in this 32-kb subclone by DNA-DNA hybridization. Transposon mutagenesis of this subclone confirmed that regions containing these nif and fix genes were required for induction of nitrogen-fixing nodules on clover. In addition, a region located 5 kb downstream of the nifK gene was found to be required for induction of nitrogen-fixing nodules. No homology to known nif and fix genes could be detected in this latter region
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/jb.170.9.3793-3802.1988