Loading…

A Stochastic Model for Leukocyte Random Motility and Chemotaxis Based on Receptor Binding Fluctuations

Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 1988-02, Vol.106 (2), p.303-309
Main Authors: Tranquillo, R. T., Lauffenburger, D. A., Zigmond, S. H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-9f9170356cdfce8922af89657dad3fb56ded73e73a4f3a7e909ee38faffde62d3
cites
container_end_page 309
container_issue 2
container_start_page 303
container_title The Journal of cell biology
container_volume 106
creator Tranquillo, R. T.
Lauffenburger, D. A.
Zigmond, S. H.
description Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an "orientation bias" characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper, we offer the possibility that "noise" in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant/receptor binding. This model can simulate cell paths similar to those observed experimentally, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Furthermore, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.
doi_str_mv 10.1083/jcb.106.2.303
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2114982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1612724</jstor_id><sourcerecordid>1612724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-9f9170356cdfce8922af89657dad3fb56ded73e73a4f3a7e909ee38faffde62d3</originalsourceid><addsrcrecordid>eNpVkc1vEzEQxS0EKqFw5AaSD4jbBn_sly9IbUQBKQipwNma2OPGYddO115E_nsMiQKcPNb7-c2MHyHPOVty1ss3O7MpRbsUS8nkA7LgTc2qntfsIVkwJnilGtE8Jk9S2jHG6q6WF-RCSqmYkgviruiXHM0WUvaGfooWB-riRNc4f4_mkJHeQrBxLFL2g88HWq50tcUxZvjpE72GhJbGQG_R4D6Xp9c-WB_u6M0wmzxD9jGkp-SRgyHhs9N5Sb7dvPu6-lCtP7__uLpaV6ZWfa6UU7xjsmmNdQZ7JQS4XrVNZ8FKt2lai7aT2EmonYQOyw6IsnfgnMVWWHlJ3h599_NmRGsw5AkGvZ_8CNNBR_D6fyX4rb6LP7TgvEwgisHrk8EU72dMWY8-GRwGCBjnpLueKc45K2B1BM0UU5rQnZtwpn8Ho0swpWi10CWYwr_8d7IzfUqi6K9OOiQDg5sgGJ_OWNeKWv3BXhyxXSp__bdny0UnavkLYdqigA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78091110</pqid></control><display><type>article</type><title>A Stochastic Model for Leukocyte Random Motility and Chemotaxis Based on Receptor Binding Fluctuations</title><source>Alma/SFX Local Collection</source><creator>Tranquillo, R. T. ; Lauffenburger, D. A. ; Zigmond, S. H.</creator><creatorcontrib>Tranquillo, R. T. ; Lauffenburger, D. A. ; Zigmond, S. H.</creatorcontrib><description>Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an "orientation bias" characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper, we offer the possibility that "noise" in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant/receptor binding. This model can simulate cell paths similar to those observed experimentally, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Furthermore, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.106.2.303</identifier><identifier>PMID: 3339093</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>New York, NY: Rockefeller University Press</publisher><subject>Biological and medical sciences ; Cell Movement ; Cell physiology ; Cells ; Cells, Cultured ; Chemotactic factors ; Chemotaxis ; Chemotaxis, Leukocyte ; Fundamental and applied biological sciences. Psychology ; Humans ; In Vitro Techniques ; Leukocytes ; Mathematical constants ; Modeling ; Models, Theoretical ; Molecular and cellular biology ; Motility and taxis ; Neutrophils ; Neutrophils - physiology ; Random walk ; Receptors ; Receptors, Formyl Peptide ; Receptors, Immunologic - physiology ; Signal noise ; Stochastic Processes</subject><ispartof>The Journal of cell biology, 1988-02, Vol.106 (2), p.303-309</ispartof><rights>Copyright 1988 The Rockefeller University Press</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-9f9170356cdfce8922af89657dad3fb56ded73e73a4f3a7e909ee38faffde62d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7624993$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3339093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tranquillo, R. T.</creatorcontrib><creatorcontrib>Lauffenburger, D. A.</creatorcontrib><creatorcontrib>Zigmond, S. H.</creatorcontrib><title>A Stochastic Model for Leukocyte Random Motility and Chemotaxis Based on Receptor Binding Fluctuations</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an "orientation bias" characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper, we offer the possibility that "noise" in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant/receptor binding. This model can simulate cell paths similar to those observed experimentally, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Furthermore, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.</description><subject>Biological and medical sciences</subject><subject>Cell Movement</subject><subject>Cell physiology</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Chemotactic factors</subject><subject>Chemotaxis</subject><subject>Chemotaxis, Leukocyte</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Leukocytes</subject><subject>Mathematical constants</subject><subject>Modeling</subject><subject>Models, Theoretical</subject><subject>Molecular and cellular biology</subject><subject>Motility and taxis</subject><subject>Neutrophils</subject><subject>Neutrophils - physiology</subject><subject>Random walk</subject><subject>Receptors</subject><subject>Receptors, Formyl Peptide</subject><subject>Receptors, Immunologic - physiology</subject><subject>Signal noise</subject><subject>Stochastic Processes</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNpVkc1vEzEQxS0EKqFw5AaSD4jbBn_sly9IbUQBKQipwNma2OPGYddO115E_nsMiQKcPNb7-c2MHyHPOVty1ss3O7MpRbsUS8nkA7LgTc2qntfsIVkwJnilGtE8Jk9S2jHG6q6WF-RCSqmYkgviruiXHM0WUvaGfooWB-riRNc4f4_mkJHeQrBxLFL2g88HWq50tcUxZvjpE72GhJbGQG_R4D6Xp9c-WB_u6M0wmzxD9jGkp-SRgyHhs9N5Sb7dvPu6-lCtP7__uLpaV6ZWfa6UU7xjsmmNdQZ7JQS4XrVNZ8FKt2lai7aT2EmonYQOyw6IsnfgnMVWWHlJ3h599_NmRGsw5AkGvZ_8CNNBR_D6fyX4rb6LP7TgvEwgisHrk8EU72dMWY8-GRwGCBjnpLueKc45K2B1BM0UU5rQnZtwpn8Ho0swpWi10CWYwr_8d7IzfUqi6K9OOiQDg5sgGJ_OWNeKWv3BXhyxXSp__bdny0UnavkLYdqigA</recordid><startdate>19880201</startdate><enddate>19880201</enddate><creator>Tranquillo, R. T.</creator><creator>Lauffenburger, D. A.</creator><creator>Zigmond, S. H.</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19880201</creationdate><title>A Stochastic Model for Leukocyte Random Motility and Chemotaxis Based on Receptor Binding Fluctuations</title><author>Tranquillo, R. T. ; Lauffenburger, D. A. ; Zigmond, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-9f9170356cdfce8922af89657dad3fb56ded73e73a4f3a7e909ee38faffde62d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Biological and medical sciences</topic><topic>Cell Movement</topic><topic>Cell physiology</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Chemotactic factors</topic><topic>Chemotaxis</topic><topic>Chemotaxis, Leukocyte</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Leukocytes</topic><topic>Mathematical constants</topic><topic>Modeling</topic><topic>Models, Theoretical</topic><topic>Molecular and cellular biology</topic><topic>Motility and taxis</topic><topic>Neutrophils</topic><topic>Neutrophils - physiology</topic><topic>Random walk</topic><topic>Receptors</topic><topic>Receptors, Formyl Peptide</topic><topic>Receptors, Immunologic - physiology</topic><topic>Signal noise</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tranquillo, R. T.</creatorcontrib><creatorcontrib>Lauffenburger, D. A.</creatorcontrib><creatorcontrib>Zigmond, S. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tranquillo, R. T.</au><au>Lauffenburger, D. A.</au><au>Zigmond, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stochastic Model for Leukocyte Random Motility and Chemotaxis Based on Receptor Binding Fluctuations</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1988-02-01</date><risdate>1988</risdate><volume>106</volume><issue>2</issue><spage>303</spage><epage>309</epage><pages>303-309</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Two central features of polymorphonuclear leukocyte chemosensory movement behavior demand fundamental theoretical understanding. In uniform concentrations of chemoattractant, these cells exhibit a persistent random walk, with a characteristic "persistence time" between significant changes in direction. In chemoattractant concentration gradients, they demonstrate a biased random walk, with an "orientation bias" characterizing the fraction of cells moving up the gradient. A coherent picture of cell movement responses to chemoattractant requires that both the persistence time and the orientation bias be explained within a unifying framework. In this paper, we offer the possibility that "noise" in the cellular signal perception/response mechanism can simultaneously account for these two key phenomena. In particular, we develop a stochastic mathematical model for cell locomotion based on kinetic fluctuations in chemoattractant/receptor binding. This model can simulate cell paths similar to those observed experimentally, under conditions of uniform chemoattractant concentrations as well as chemoattractant concentration gradients. Furthermore, this model can quantitatively predict both cell persistence time and dependence of orientation bias on gradient size. Thus, the concept of signal "noise" can quantitatively unify the major characteristics of leukocyte random motility and chemotaxis. The same level of noise large enough to account for the observed frequency of turning in uniform environments is simultaneously small enough to allow for the observed degree of directional bias in gradients.</abstract><cop>New York, NY</cop><pub>Rockefeller University Press</pub><pmid>3339093</pmid><doi>10.1083/jcb.106.2.303</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 1988-02, Vol.106 (2), p.303-309
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2114982
source Alma/SFX Local Collection
subjects Biological and medical sciences
Cell Movement
Cell physiology
Cells
Cells, Cultured
Chemotactic factors
Chemotaxis
Chemotaxis, Leukocyte
Fundamental and applied biological sciences. Psychology
Humans
In Vitro Techniques
Leukocytes
Mathematical constants
Modeling
Models, Theoretical
Molecular and cellular biology
Motility and taxis
Neutrophils
Neutrophils - physiology
Random walk
Receptors
Receptors, Formyl Peptide
Receptors, Immunologic - physiology
Signal noise
Stochastic Processes
title A Stochastic Model for Leukocyte Random Motility and Chemotaxis Based on Receptor Binding Fluctuations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A07%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stochastic%20Model%20for%20Leukocyte%20Random%20Motility%20and%20Chemotaxis%20Based%20on%20Receptor%20Binding%20Fluctuations&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Tranquillo,%20R.%20T.&rft.date=1988-02-01&rft.volume=106&rft.issue=2&rft.spage=303&rft.epage=309&rft.pages=303-309&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.106.2.303&rft_dat=%3Cjstor_pubme%3E1612724%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-9f9170356cdfce8922af89657dad3fb56ded73e73a4f3a7e909ee38faffde62d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=78091110&rft_id=info:pmid/3339093&rft_jstor_id=1612724&rfr_iscdi=true