Loading…

Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope

The interactions of precursor proteins with components of the chloroplast envelope were investigated during toe early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to th...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 1996-07, Vol.134 (2), p.315-327
Main Authors: Ma, Y. (The State University of New Jersey, Newark, NJ.), Kouranov, A, LaSala, S.E, Schnell, D.J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-a406bc5f9964d3cb22b77a32f291a88c11aded990db291a81dbd21f139d7b4da3
cites
container_end_page 327
container_issue 2
container_start_page 315
container_title The Journal of cell biology
container_volume 134
creator Ma, Y. (The State University of New Jersey, Newark, NJ.)
Kouranov, A
LaSala, S.E
Schnell, D.J
description The interactions of precursor proteins with components of the chloroplast envelope were investigated during toe early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross-linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex to the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane
doi_str_mv 10.1083/jcb.134.2.315
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2120871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1617648</jstor_id><sourcerecordid>1617648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-a406bc5f9964d3cb22b77a32f291a88c11aded990db291a81dbd21f139d7b4da3</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhiMEKqVw5IJA8olTs_griX2pVFV8VKoEEu3ZmtjOrldZO9hOK_4fPwxvdilw8mjex--M5q2q1wSvCBbsw1b3K8L4iq4YaZ5Up6ThuBaE46fVKcaU1LKhzfPqRUpbjDHvODupTkSHO0HEafXr9iEgHXZT8NbnhMKA8sYivRlDDNMIKaMphmydR65AMSOYJoiQ53SOri-_iRaBN_uqa86R89lG0Bk9uLxZjHIEn1xGyf6YrdcWmTk6v160aHVYe5dd8IvJwo5Bw9Ipm0yFmGMK8c8OCUFevoa5DELW39sxTPZl9WyAMdlXx_esuvv08fbqS33z9fP11eVNrTmluQaO2143g5QtN0z3lPZdB4wOVBIQQhMCxhopsemXDjG9oWQgTJqu5wbYWXVx8J3mfmeNLheLMKopuh3EnyqAU_8r3m3UOtwrSigWHSkG748GMZR7pKx2Lmk7juBtmJMqmbQYS1nA-gDqGFKKdngcQrDax65K7KrErqgqsRf-3b-bPdLHnIv-9qBvUw7xr1lLupbv5TcHeYCgYB1dUnffZUtFwwT7DR67wOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78160099</pqid></control><display><type>article</type><title>Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope</title><source>JSTOR</source><creator>Ma, Y. (The State University of New Jersey, Newark, NJ.) ; Kouranov, A ; LaSala, S.E ; Schnell, D.J</creator><creatorcontrib>Ma, Y. (The State University of New Jersey, Newark, NJ.) ; Kouranov, A ; LaSala, S.E ; Schnell, D.J</creatorcontrib><description>The interactions of precursor proteins with components of the chloroplast envelope were investigated during toe early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross-linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex to the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.134.2.315</identifier><identifier>PMID: 8707818</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Antibodies ; Biological Transport ; CHLOROPLASTE ; Chloroplasts ; Chloroplasts - metabolism ; CLOROPLASTO ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; Gels ; GTP-Binding Proteins - metabolism ; Hydrolysis ; IMMUNOLOGIE ; Immunoprecipitation ; Imports ; INMUNOLOGIA ; MEMBRANAS CELULARES ; MEMBRANE CELLULAIRE ; Membrane proteins ; Membrane Proteins - metabolism ; METABOLISME DES PROTEINES ; METABOLISMO PROTEICO ; P branes ; Peptides - metabolism ; PISUM SATIVUM ; Pisum sativum - metabolism ; Plant Proteins ; PRECURSEUR D'ENZYME ; PRECURSORES DE ENZIMAS ; Protein precursors ; Protein Precursors - metabolism ; Protein Sorting Signals - metabolism ; PROTEINAS ; PROTEINAS AGLUTINANTES ; PROTEINE ; PROTEINE DE LIAISON ; Rabbits ; Ribulose-Bisphosphate Carboxylase - metabolism ; RUBISCO ; String theory</subject><ispartof>The Journal of cell biology, 1996-07, Vol.134 (2), p.315-327</ispartof><rights>Copyright 1996 The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-a406bc5f9964d3cb22b77a32f291a88c11aded990db291a81dbd21f139d7b4da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1617648$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1617648$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8707818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Y. (The State University of New Jersey, Newark, NJ.)</creatorcontrib><creatorcontrib>Kouranov, A</creatorcontrib><creatorcontrib>LaSala, S.E</creatorcontrib><creatorcontrib>Schnell, D.J</creatorcontrib><title>Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>The interactions of precursor proteins with components of the chloroplast envelope were investigated during toe early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross-linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex to the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Transport</subject><subject>CHLOROPLASTE</subject><subject>Chloroplasts</subject><subject>Chloroplasts - metabolism</subject><subject>CLOROPLASTO</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>Gels</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Hydrolysis</subject><subject>IMMUNOLOGIE</subject><subject>Immunoprecipitation</subject><subject>Imports</subject><subject>INMUNOLOGIA</subject><subject>MEMBRANAS CELULARES</subject><subject>MEMBRANE CELLULAIRE</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - metabolism</subject><subject>METABOLISME DES PROTEINES</subject><subject>METABOLISMO PROTEICO</subject><subject>P branes</subject><subject>Peptides - metabolism</subject><subject>PISUM SATIVUM</subject><subject>Pisum sativum - metabolism</subject><subject>Plant Proteins</subject><subject>PRECURSEUR D'ENZYME</subject><subject>PRECURSORES DE ENZIMAS</subject><subject>Protein precursors</subject><subject>Protein Precursors - metabolism</subject><subject>Protein Sorting Signals - metabolism</subject><subject>PROTEINAS</subject><subject>PROTEINAS AGLUTINANTES</subject><subject>PROTEINE</subject><subject>PROTEINE DE LIAISON</subject><subject>Rabbits</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><subject>RUBISCO</subject><subject>String theory</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpVkU1v1DAQhiMEKqVw5IJA8olTs_griX2pVFV8VKoEEu3ZmtjOrldZO9hOK_4fPwxvdilw8mjex--M5q2q1wSvCBbsw1b3K8L4iq4YaZ5Up6ThuBaE46fVKcaU1LKhzfPqRUpbjDHvODupTkSHO0HEafXr9iEgHXZT8NbnhMKA8sYivRlDDNMIKaMphmydR65AMSOYJoiQ53SOri-_iRaBN_uqa86R89lG0Bk9uLxZjHIEn1xGyf6YrdcWmTk6v160aHVYe5dd8IvJwo5Bw9Ipm0yFmGMK8c8OCUFevoa5DELW39sxTPZl9WyAMdlXx_esuvv08fbqS33z9fP11eVNrTmluQaO2143g5QtN0z3lPZdB4wOVBIQQhMCxhopsemXDjG9oWQgTJqu5wbYWXVx8J3mfmeNLheLMKopuh3EnyqAU_8r3m3UOtwrSigWHSkG748GMZR7pKx2Lmk7juBtmJMqmbQYS1nA-gDqGFKKdngcQrDax65K7KrErqgqsRf-3b-bPdLHnIv-9qBvUw7xr1lLupbv5TcHeYCgYB1dUnffZUtFwwT7DR67wOg</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Ma, Y. (The State University of New Jersey, Newark, NJ.)</creator><creator>Kouranov, A</creator><creator>LaSala, S.E</creator><creator>Schnell, D.J</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960701</creationdate><title>Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope</title><author>Ma, Y. (The State University of New Jersey, Newark, NJ.) ; Kouranov, A ; LaSala, S.E ; Schnell, D.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-a406bc5f9964d3cb22b77a32f291a88c11aded990db291a81dbd21f139d7b4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Transport</topic><topic>CHLOROPLASTE</topic><topic>Chloroplasts</topic><topic>Chloroplasts - metabolism</topic><topic>CLOROPLASTO</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>Gels</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Hydrolysis</topic><topic>IMMUNOLOGIE</topic><topic>Immunoprecipitation</topic><topic>Imports</topic><topic>INMUNOLOGIA</topic><topic>MEMBRANAS CELULARES</topic><topic>MEMBRANE CELLULAIRE</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - metabolism</topic><topic>METABOLISME DES PROTEINES</topic><topic>METABOLISMO PROTEICO</topic><topic>P branes</topic><topic>Peptides - metabolism</topic><topic>PISUM SATIVUM</topic><topic>Pisum sativum - metabolism</topic><topic>Plant Proteins</topic><topic>PRECURSEUR D'ENZYME</topic><topic>PRECURSORES DE ENZIMAS</topic><topic>Protein precursors</topic><topic>Protein Precursors - metabolism</topic><topic>Protein Sorting Signals - metabolism</topic><topic>PROTEINAS</topic><topic>PROTEINAS AGLUTINANTES</topic><topic>PROTEINE</topic><topic>PROTEINE DE LIAISON</topic><topic>Rabbits</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><topic>RUBISCO</topic><topic>String theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Y. (The State University of New Jersey, Newark, NJ.)</creatorcontrib><creatorcontrib>Kouranov, A</creatorcontrib><creatorcontrib>LaSala, S.E</creatorcontrib><creatorcontrib>Schnell, D.J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Y. (The State University of New Jersey, Newark, NJ.)</au><au>Kouranov, A</au><au>LaSala, S.E</au><au>Schnell, D.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1996-07-01</date><risdate>1996</risdate><volume>134</volume><issue>2</issue><spage>315</spage><epage>327</epage><pages>315-327</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>The interactions of precursor proteins with components of the chloroplast envelope were investigated during toe early stages of protein import using a chemical cross-linking strategy. In the absence of energy, two components of the outer envelope import machinery, IAP86 and IAP75, cross-linked to the transit sequence of the precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase (pS) in a precursor binding assay. In the presence of concentrations of ATP or GTP that support maximal precursor binding to the envelope, cross-linking to the transit sequence occurred predominantly with IAP75 and a previously unidentified 21-kD polypeptide of the inner membrane, indicating that the transit sequence had inserted across the outer membrane. Cross-linking of envelope components to sequences in the mature portion of a second precursor, preferredoxin, was detected in the presence of ATP or GTP, suggesting that sequences distant from the transit sequence were brought into the vicinity of the outer membrane under these conditions. IAP75 and a third import component, IAP34, were coimmunoprecipitated with IAP86 antibodies from solubilized envelope membranes, indicating that these three proteins form a stable complex to the outer membrane. On the basis of these observations, we propose that IAP86 and IAP75 act as components of a multisubunit complex to mediate energy-independent recognition of the transit sequence and subsequent nucleoside triphosphate-induced insertion of the transit sequence across the outer membrane</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>8707818</pmid><doi>10.1083/jcb.134.2.315</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 1996-07, Vol.134 (2), p.315-327
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2120871
source JSTOR
subjects Animals
Antibodies
Biological Transport
CHLOROPLASTE
Chloroplasts
Chloroplasts - metabolism
CLOROPLASTO
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
Gels
GTP-Binding Proteins - metabolism
Hydrolysis
IMMUNOLOGIE
Immunoprecipitation
Imports
INMUNOLOGIA
MEMBRANAS CELULARES
MEMBRANE CELLULAIRE
Membrane proteins
Membrane Proteins - metabolism
METABOLISME DES PROTEINES
METABOLISMO PROTEICO
P branes
Peptides - metabolism
PISUM SATIVUM
Pisum sativum - metabolism
Plant Proteins
PRECURSEUR D'ENZYME
PRECURSORES DE ENZIMAS
Protein precursors
Protein Precursors - metabolism
Protein Sorting Signals - metabolism
PROTEINAS
PROTEINAS AGLUTINANTES
PROTEINE
PROTEINE DE LIAISON
Rabbits
Ribulose-Bisphosphate Carboxylase - metabolism
RUBISCO
String theory
title Two components of the chloroplast protein import apparatus, IAP86 and IAP75, interact with the transit sequence during the recognition and translocation of precursor proteins at the outer envelope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20components%20of%20the%20chloroplast%20protein%20import%20apparatus,%20IAP86%20and%20IAP75,%20interact%20with%20the%20transit%20sequence%20during%20the%20recognition%20and%20translocation%20of%20precursor%20proteins%20at%20the%20outer%20envelope&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Ma,%20Y.%20(The%20State%20University%20of%20New%20Jersey,%20Newark,%20NJ.)&rft.date=1996-07-01&rft.volume=134&rft.issue=2&rft.spage=315&rft.epage=327&rft.pages=315-327&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.134.2.315&rft_dat=%3Cjstor_pubme%3E1617648%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-a406bc5f9964d3cb22b77a32f291a88c11aded990db291a81dbd21f139d7b4da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=78160099&rft_id=info:pmid/8707818&rft_jstor_id=1617648&rfr_iscdi=true