Loading…
Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center
KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H.,...
Saved in:
Published in: | The Journal of cell biology 1996-06, Vol.133 (6), p.1331-1346 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823 |
---|---|
cites | |
container_end_page | 1346 |
container_issue | 6 |
container_start_page | 1331 |
container_title | The Journal of cell biology |
container_volume | 133 |
creator | Biggins, S. (University of California, San Francisco, CA.) Ivanovska, I Rose, M.D |
description | KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB |
doi_str_mv | 10.1083/jcb.133.6.1331 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2120900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1617440</jstor_id><sourcerecordid>1617440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823</originalsourceid><addsrcrecordid>eNpdUU1v1DAUtBBV2RauHBBIFgduWfwd54KEKgpIlXqAHhAHy3FeUi9Ze2snK8Gvr6NdFejBz36a8byxB6GXlKwp0fz9xrVryvlaLZU-QSsqBak0FeQpWhHCaNVIJp-hs5w3hBBRC36KTrXSrKwV-vkDbJ7w3Pq72U8-VKP_BXiAABnbBNiHfRz30JUD7ubd6J2dfAw49ni6Bbz1LsVpbucRcEyDDf6PDwN2ECZIz9FJb8cML477Obq5_PT94kt1df3568XHq8pJ0UwVOKW5qlsiGee8sUxbyal0jPXcCdFC6ZUE3tetoKBE37UWWNN1DKzuNOPn6MNBdze3W-iW4cmOZpf81qbfJlpv_keCvzVD3BtGGWkIKQLvjgIp3s2QJ7P12cE42gBxzoZKRWrKmkJ8-4i4iXMK5XFFqyZKcqELaX0gla_JOUH_4IQSs2RmSmampGXUUmm58OZf_w_0Y0gFf33AN3mK6a-aorUQi_tXB7i30dgh-WxuvjWK1YQpfg9ERaXl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217065348</pqid></control><display><type>article</type><title>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</title><source>Alma/SFX Local Collection</source><creator>Biggins, S. (University of California, San Francisco, CA.) ; Ivanovska, I ; Rose, M.D</creator><creatorcontrib>Biggins, S. (University of California, San Francisco, CA.) ; Ivanovska, I ; Rose, M.D</creatorcontrib><description>KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.133.6.1331</identifier><identifier>PMID: 8682868</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Alleles ; Amino Acid Sequence ; Antibodies ; Base Sequence ; Calcium-Binding Proteins - analysis ; Calcium-Binding Proteins - genetics ; Cell cycle ; Cell Cycle Proteins - analysis ; Cell Cycle Proteins - genetics ; Cell nucleus ; Cells ; Cellular biology ; Centrosome - physiology ; Centrosome - ultrastructure ; Cloning, Molecular ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; DNA-Binding Proteins - physiology ; ESTRUCTURA CELULAR ; Fungal Proteins - analysis ; Fungal Proteins - biosynthesis ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - physiology ; GENE ; GENES ; Genes, Fungal - genetics ; Genetic mutation ; Molecular Sequence Data ; Molecular Weight ; MUTANT ; MUTANTES ; Mutation ; Nuclear Proteins - genetics ; Plasmids ; Protein Processing, Post-Translational ; PROTEINAS ; PROTEINE ; Proteins ; Restriction Mapping ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; SECUENCIA NUCLEOTIDICA ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; SEQUENCE NUCLEOTIDIQUE ; Spindle pole body ; STRUCTURE CELLULAIRE ; Ubiquitins ; Ubiquitins - biosynthesis ; Ubiquitins - chemistry ; Ubiquitins - genetics ; Ubiquitins - physiology ; Yeast ; Yeasts</subject><ispartof>The Journal of cell biology, 1996-06, Vol.133 (6), p.1331-1346</ispartof><rights>Copyright 1996 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jun 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8682868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biggins, S. (University of California, San Francisco, CA.)</creatorcontrib><creatorcontrib>Ivanovska, I</creatorcontrib><creatorcontrib>Rose, M.D</creatorcontrib><title>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Base Sequence</subject><subject>Calcium-Binding Proteins - analysis</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - analysis</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell nucleus</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Centrosome - physiology</subject><subject>Centrosome - ultrastructure</subject><subject>Cloning, Molecular</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>DNA-Binding Proteins - physiology</subject><subject>ESTRUCTURA CELULAR</subject><subject>Fungal Proteins - analysis</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - physiology</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Fungal - genetics</subject><subject>Genetic mutation</subject><subject>Molecular Sequence Data</subject><subject>Molecular Weight</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Plasmids</subject><subject>Protein Processing, Post-Translational</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>Proteins</subject><subject>Restriction Mapping</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Spindle pole body</subject><subject>STRUCTURE CELLULAIRE</subject><subject>Ubiquitins</subject><subject>Ubiquitins - biosynthesis</subject><subject>Ubiquitins - chemistry</subject><subject>Ubiquitins - genetics</subject><subject>Ubiquitins - physiology</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpdUU1v1DAUtBBV2RauHBBIFgduWfwd54KEKgpIlXqAHhAHy3FeUi9Ze2snK8Gvr6NdFejBz36a8byxB6GXlKwp0fz9xrVryvlaLZU-QSsqBak0FeQpWhHCaNVIJp-hs5w3hBBRC36KTrXSrKwV-vkDbJ7w3Pq72U8-VKP_BXiAABnbBNiHfRz30JUD7ubd6J2dfAw49ni6Bbz1LsVpbucRcEyDDf6PDwN2ECZIz9FJb8cML477Obq5_PT94kt1df3568XHq8pJ0UwVOKW5qlsiGee8sUxbyal0jPXcCdFC6ZUE3tetoKBE37UWWNN1DKzuNOPn6MNBdze3W-iW4cmOZpf81qbfJlpv_keCvzVD3BtGGWkIKQLvjgIp3s2QJ7P12cE42gBxzoZKRWrKmkJ8-4i4iXMK5XFFqyZKcqELaX0gla_JOUH_4IQSs2RmSmampGXUUmm58OZf_w_0Y0gFf33AN3mK6a-aorUQi_tXB7i30dgh-WxuvjWK1YQpfg9ERaXl</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Biggins, S. (University of California, San Francisco, CA.)</creator><creator>Ivanovska, I</creator><creator>Rose, M.D</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19960601</creationdate><title>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</title><author>Biggins, S. (University of California, San Francisco, CA.) ; Ivanovska, I ; Rose, M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Base Sequence</topic><topic>Calcium-Binding Proteins - analysis</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - analysis</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell nucleus</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Centrosome - physiology</topic><topic>Centrosome - ultrastructure</topic><topic>Cloning, Molecular</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>DNA-Binding Proteins - physiology</topic><topic>ESTRUCTURA CELULAR</topic><topic>Fungal Proteins - analysis</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - physiology</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Fungal - genetics</topic><topic>Genetic mutation</topic><topic>Molecular Sequence Data</topic><topic>Molecular Weight</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Plasmids</topic><topic>Protein Processing, Post-Translational</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>Proteins</topic><topic>Restriction Mapping</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Spindle pole body</topic><topic>STRUCTURE CELLULAIRE</topic><topic>Ubiquitins</topic><topic>Ubiquitins - biosynthesis</topic><topic>Ubiquitins - chemistry</topic><topic>Ubiquitins - genetics</topic><topic>Ubiquitins - physiology</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biggins, S. (University of California, San Francisco, CA.)</creatorcontrib><creatorcontrib>Ivanovska, I</creatorcontrib><creatorcontrib>Rose, M.D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biggins, S. (University of California, San Francisco, CA.)</au><au>Ivanovska, I</au><au>Rose, M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>133</volume><issue>6</issue><spage>1331</spage><epage>1346</epage><pages>1331-1346</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>8682868</pmid><doi>10.1083/jcb.133.6.1331</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 1996-06, Vol.133 (6), p.1331-1346 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2120900 |
source | Alma/SFX Local Collection |
subjects | Alleles Amino Acid Sequence Antibodies Base Sequence Calcium-Binding Proteins - analysis Calcium-Binding Proteins - genetics Cell cycle Cell Cycle Proteins - analysis Cell Cycle Proteins - genetics Cell nucleus Cells Cellular biology Centrosome - physiology Centrosome - ultrastructure Cloning, Molecular COMPOSICION QUIMICA COMPOSITION CHIMIQUE DNA-Binding Proteins - physiology ESTRUCTURA CELULAR Fungal Proteins - analysis Fungal Proteins - biosynthesis Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - physiology GENE GENES Genes, Fungal - genetics Genetic mutation Molecular Sequence Data Molecular Weight MUTANT MUTANTES Mutation Nuclear Proteins - genetics Plasmids Protein Processing, Post-Translational PROTEINAS PROTEINE Proteins Restriction Mapping SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins SECUENCIA NUCLEOTIDICA Sequence Analysis, DNA Sequence Homology, Amino Acid SEQUENCE NUCLEOTIDIQUE Spindle pole body STRUCTURE CELLULAIRE Ubiquitins Ubiquitins - biosynthesis Ubiquitins - chemistry Ubiquitins - genetics Ubiquitins - physiology Yeast Yeasts |
title | Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20ubiquitin-like%20genes%20are%20involved%20in%20duplication%20of%20the%20microtubule%20organizing%20center&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Biggins,%20S.%20(University%20of%20California,%20San%20Francisco,%20CA.)&rft.date=1996-06-01&rft.volume=133&rft.issue=6&rft.spage=1331&rft.epage=1346&rft.pages=1331-1346&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.133.6.1331&rft_dat=%3Cjstor_pubme%3E1617440%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217065348&rft_id=info:pmid/8682868&rft_jstor_id=1617440&rfr_iscdi=true |