Loading…

Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center

KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H.,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 1996-06, Vol.133 (6), p.1331-1346
Main Authors: Biggins, S. (University of California, San Francisco, CA.), Ivanovska, I, Rose, M.D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823
cites
container_end_page 1346
container_issue 6
container_start_page 1331
container_title The Journal of cell biology
container_volume 133
creator Biggins, S. (University of California, San Francisco, CA.)
Ivanovska, I
Rose, M.D
description KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB
doi_str_mv 10.1083/jcb.133.6.1331
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2120900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1617440</jstor_id><sourcerecordid>1617440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823</originalsourceid><addsrcrecordid>eNpdUU1v1DAUtBBV2RauHBBIFgduWfwd54KEKgpIlXqAHhAHy3FeUi9Ze2snK8Gvr6NdFejBz36a8byxB6GXlKwp0fz9xrVryvlaLZU-QSsqBak0FeQpWhHCaNVIJp-hs5w3hBBRC36KTrXSrKwV-vkDbJ7w3Pq72U8-VKP_BXiAABnbBNiHfRz30JUD7ubd6J2dfAw49ni6Bbz1LsVpbucRcEyDDf6PDwN2ECZIz9FJb8cML477Obq5_PT94kt1df3568XHq8pJ0UwVOKW5qlsiGee8sUxbyal0jPXcCdFC6ZUE3tetoKBE37UWWNN1DKzuNOPn6MNBdze3W-iW4cmOZpf81qbfJlpv_keCvzVD3BtGGWkIKQLvjgIp3s2QJ7P12cE42gBxzoZKRWrKmkJ8-4i4iXMK5XFFqyZKcqELaX0gla_JOUH_4IQSs2RmSmampGXUUmm58OZf_w_0Y0gFf33AN3mK6a-aorUQi_tXB7i30dgh-WxuvjWK1YQpfg9ERaXl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217065348</pqid></control><display><type>article</type><title>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</title><source>Alma/SFX Local Collection</source><creator>Biggins, S. (University of California, San Francisco, CA.) ; Ivanovska, I ; Rose, M.D</creator><creatorcontrib>Biggins, S. (University of California, San Francisco, CA.) ; Ivanovska, I ; Rose, M.D</creatorcontrib><description>KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.133.6.1331</identifier><identifier>PMID: 8682868</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Alleles ; Amino Acid Sequence ; Antibodies ; Base Sequence ; Calcium-Binding Proteins - analysis ; Calcium-Binding Proteins - genetics ; Cell cycle ; Cell Cycle Proteins - analysis ; Cell Cycle Proteins - genetics ; Cell nucleus ; Cells ; Cellular biology ; Centrosome - physiology ; Centrosome - ultrastructure ; Cloning, Molecular ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; DNA-Binding Proteins - physiology ; ESTRUCTURA CELULAR ; Fungal Proteins - analysis ; Fungal Proteins - biosynthesis ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - physiology ; GENE ; GENES ; Genes, Fungal - genetics ; Genetic mutation ; Molecular Sequence Data ; Molecular Weight ; MUTANT ; MUTANTES ; Mutation ; Nuclear Proteins - genetics ; Plasmids ; Protein Processing, Post-Translational ; PROTEINAS ; PROTEINE ; Proteins ; Restriction Mapping ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins ; SECUENCIA NUCLEOTIDICA ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; SEQUENCE NUCLEOTIDIQUE ; Spindle pole body ; STRUCTURE CELLULAIRE ; Ubiquitins ; Ubiquitins - biosynthesis ; Ubiquitins - chemistry ; Ubiquitins - genetics ; Ubiquitins - physiology ; Yeast ; Yeasts</subject><ispartof>The Journal of cell biology, 1996-06, Vol.133 (6), p.1331-1346</ispartof><rights>Copyright 1996 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jun 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8682868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biggins, S. (University of California, San Francisco, CA.)</creatorcontrib><creatorcontrib>Ivanovska, I</creatorcontrib><creatorcontrib>Rose, M.D</creatorcontrib><title>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Antibodies</subject><subject>Base Sequence</subject><subject>Calcium-Binding Proteins - analysis</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - analysis</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell nucleus</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Centrosome - physiology</subject><subject>Centrosome - ultrastructure</subject><subject>Cloning, Molecular</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>DNA-Binding Proteins - physiology</subject><subject>ESTRUCTURA CELULAR</subject><subject>Fungal Proteins - analysis</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - physiology</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Fungal - genetics</subject><subject>Genetic mutation</subject><subject>Molecular Sequence Data</subject><subject>Molecular Weight</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Plasmids</subject><subject>Protein Processing, Post-Translational</subject><subject>PROTEINAS</subject><subject>PROTEINE</subject><subject>Proteins</subject><subject>Restriction Mapping</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Spindle pole body</subject><subject>STRUCTURE CELLULAIRE</subject><subject>Ubiquitins</subject><subject>Ubiquitins - biosynthesis</subject><subject>Ubiquitins - chemistry</subject><subject>Ubiquitins - genetics</subject><subject>Ubiquitins - physiology</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpdUU1v1DAUtBBV2RauHBBIFgduWfwd54KEKgpIlXqAHhAHy3FeUi9Ze2snK8Gvr6NdFejBz36a8byxB6GXlKwp0fz9xrVryvlaLZU-QSsqBak0FeQpWhHCaNVIJp-hs5w3hBBRC36KTrXSrKwV-vkDbJ7w3Pq72U8-VKP_BXiAABnbBNiHfRz30JUD7ubd6J2dfAw49ni6Bbz1LsVpbucRcEyDDf6PDwN2ECZIz9FJb8cML477Obq5_PT94kt1df3568XHq8pJ0UwVOKW5qlsiGee8sUxbyal0jPXcCdFC6ZUE3tetoKBE37UWWNN1DKzuNOPn6MNBdze3W-iW4cmOZpf81qbfJlpv_keCvzVD3BtGGWkIKQLvjgIp3s2QJ7P12cE42gBxzoZKRWrKmkJ8-4i4iXMK5XFFqyZKcqELaX0gla_JOUH_4IQSs2RmSmampGXUUmm58OZf_w_0Y0gFf33AN3mK6a-aorUQi_tXB7i30dgh-WxuvjWK1YQpfg9ERaXl</recordid><startdate>19960601</startdate><enddate>19960601</enddate><creator>Biggins, S. (University of California, San Francisco, CA.)</creator><creator>Ivanovska, I</creator><creator>Rose, M.D</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19960601</creationdate><title>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</title><author>Biggins, S. (University of California, San Francisco, CA.) ; Ivanovska, I ; Rose, M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Antibodies</topic><topic>Base Sequence</topic><topic>Calcium-Binding Proteins - analysis</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - analysis</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell nucleus</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Centrosome - physiology</topic><topic>Centrosome - ultrastructure</topic><topic>Cloning, Molecular</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>DNA-Binding Proteins - physiology</topic><topic>ESTRUCTURA CELULAR</topic><topic>Fungal Proteins - analysis</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - physiology</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Fungal - genetics</topic><topic>Genetic mutation</topic><topic>Molecular Sequence Data</topic><topic>Molecular Weight</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Plasmids</topic><topic>Protein Processing, Post-Translational</topic><topic>PROTEINAS</topic><topic>PROTEINE</topic><topic>Proteins</topic><topic>Restriction Mapping</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Spindle pole body</topic><topic>STRUCTURE CELLULAIRE</topic><topic>Ubiquitins</topic><topic>Ubiquitins - biosynthesis</topic><topic>Ubiquitins - chemistry</topic><topic>Ubiquitins - genetics</topic><topic>Ubiquitins - physiology</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biggins, S. (University of California, San Francisco, CA.)</creatorcontrib><creatorcontrib>Ivanovska, I</creatorcontrib><creatorcontrib>Rose, M.D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biggins, S. (University of California, San Francisco, CA.)</au><au>Ivanovska, I</au><au>Rose, M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1996-06-01</date><risdate>1996</risdate><volume>133</volume><issue>6</issue><spage>1331</spage><epage>1346</epage><pages>1331-1346</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>KAR1 is required for duplication of the Saccharomyces cerevisiae microtubule organizing center, the spindle pole body (SPB) (Rose M.D., and G.R. Fink, 1987. Cell. 48:1047-1060). Suppressors of a kar1 allele defective for SPB duplication were isolated in two genes, CDC31 and DSK2 (Vallen, E.A., W.H., M. Winey, and M.D. Rose. 1994. Genetics. 137:407-422). To elucidate the role of DSK2 in SPB duplication, we cloned the gene and found it encodes a novel ubiquitin-like protein containing an NH2 terminus 36% identical to ubiquitin. The only other known yeast ubiquitin-like protein is encoded by the nucleotide excision repair gene RAD23 (Watkins, J.F., P. Sung, L. Prakash, and S. Prakash. 1993. Mol. Cell. Bio. 13:7757-7765). Unlike ubiquitin, the NH2-terminal domain of Dsk2p is not cleaved from the protein, indicating that Dsk2p is not conjugated to other proteins. Although the DSK2-1 mutation alters a conserved residue in the Dsk2p ubiquitin-like domain, we detect no differences in Dsk2p or Cdc31p stability. Therefore, DSK2 does not act by interfering with ubiquitin-dependent protein degradation of these proteins. Although DSK2 is not essential, a strain deleted for both DSK2 and RAD23 is temperature sensitive for growth due to a block in SPB duplication. In addition, overexpression of DSK2 is toxic, and the DSK2-1 allele causes a block in SPB duplication. Therefore, DSK2 dosage is critical for SPB duplication. We determined that CDC31 gene function is downstream of DSK2 and KAR1. Dsk2p is a nuclear-enriched protein, and we propose that Dsk2p assists in Cdc31 assembly into the new SPB</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>8682868</pmid><doi>10.1083/jcb.133.6.1331</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 1996-06, Vol.133 (6), p.1331-1346
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2120900
source Alma/SFX Local Collection
subjects Alleles
Amino Acid Sequence
Antibodies
Base Sequence
Calcium-Binding Proteins - analysis
Calcium-Binding Proteins - genetics
Cell cycle
Cell Cycle Proteins - analysis
Cell Cycle Proteins - genetics
Cell nucleus
Cells
Cellular biology
Centrosome - physiology
Centrosome - ultrastructure
Cloning, Molecular
COMPOSICION QUIMICA
COMPOSITION CHIMIQUE
DNA-Binding Proteins - physiology
ESTRUCTURA CELULAR
Fungal Proteins - analysis
Fungal Proteins - biosynthesis
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - physiology
GENE
GENES
Genes, Fungal - genetics
Genetic mutation
Molecular Sequence Data
Molecular Weight
MUTANT
MUTANTES
Mutation
Nuclear Proteins - genetics
Plasmids
Protein Processing, Post-Translational
PROTEINAS
PROTEINE
Proteins
Restriction Mapping
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
SECUENCIA NUCLEOTIDICA
Sequence Analysis, DNA
Sequence Homology, Amino Acid
SEQUENCE NUCLEOTIDIQUE
Spindle pole body
STRUCTURE CELLULAIRE
Ubiquitins
Ubiquitins - biosynthesis
Ubiquitins - chemistry
Ubiquitins - genetics
Ubiquitins - physiology
Yeast
Yeasts
title Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20ubiquitin-like%20genes%20are%20involved%20in%20duplication%20of%20the%20microtubule%20organizing%20center&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Biggins,%20S.%20(University%20of%20California,%20San%20Francisco,%20CA.)&rft.date=1996-06-01&rft.volume=133&rft.issue=6&rft.spage=1331&rft.epage=1346&rft.pages=1331-1346&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.133.6.1331&rft_dat=%3Cjstor_pubme%3E1617440%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c549t-ec68367b0523339a28a5315c22f3c44be8a565e3f7b41e64fdbae29dd2ea8d823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217065348&rft_id=info:pmid/8682868&rft_jstor_id=1617440&rfr_iscdi=true