Loading…
Plus-End Motors Override Minus-End Motors during Transport of Squid Axon Vesicles on Microtubules
Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5′-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containin...
Saved in:
Published in: | The Journal of cell biology 1996-10, Vol.135 (2), p.383-397 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c527t-1a178e5630c3b12e5306ecba5b43163543f84f19da43d963ab9a8aed59249513 |
---|---|
cites | |
container_end_page | 397 |
container_issue | 2 |
container_start_page | 383 |
container_title | The Journal of cell biology |
container_volume | 135 |
creator | Muresan, Virgil Godek, Chris P. Reese, Thomas S. Schnapp, Bruce J. |
description | Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5′-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol. |
doi_str_mv | 10.1083/jcb.135.2.383 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2121042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1617706</jstor_id><sourcerecordid>1617706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-1a178e5630c3b12e5306ecba5b43163543f84f19da43d963ab9a8aed59249513</originalsourceid><addsrcrecordid>eNqFkc1rHCEYh6U0pNu0x95akBx6m42vX6OXQgjpB2RJoUuv4sw4qcusbnQM7X9fwy5pk0tOKr-Hn_o-CL0DsgSi2Nmm75bAxJIumWIv0AIEJ40CTl6iBSEUGi2oeIVe57whhPCWs2N0rJSWQssFst-nkpvLMOBVnGPK-PrOpeQHh1c-PE6Gkny4wetkQ97FNOM44h-3xQ_4_HcM-KfLvp9cxnW_8n2Kc-lKPb9BR6Odsnt7WE_Q-vPl-uJrc3X95dvF-VXTC9rODVholROSkZ51QJ1gRLq-s6LjDCQTnI2Kj6AHy9mgJbOdtsq6QWjKtQB2gj7ta3el27qhd2FOdjK75Lc2_THRevM4Cf6XuYl3hgIFwmkt-HgoSPG2uDybrc-9myYbXCzZtIqrFjR5FgShAZS-bzx9Am5iSaEOoV7aEim4lBVq9lCdWM7JjQ9PBmLuBZsq2FTBhpoquPIf_v_nA30wWvP3-3yTq7V_ZRLaeiX7CyZ9qx4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217065466</pqid></control><display><type>article</type><title>Plus-End Motors Override Minus-End Motors during Transport of Squid Axon Vesicles on Microtubules</title><source>Alma/SFX Local Collection</source><creator>Muresan, Virgil ; Godek, Chris P. ; Reese, Thomas S. ; Schnapp, Bruce J.</creator><creatorcontrib>Muresan, Virgil ; Godek, Chris P. ; Reese, Thomas S. ; Schnapp, Bruce J.</creatorcontrib><description>Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5′-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.135.2.383</identifier><identifier>PMID: 8896596</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Adenylyl Imidodiphosphate - pharmacology ; Animals ; Antibodies ; Axons ; Axons - drug effects ; Axons - physiology ; Cellular biology ; Cytoplasm - physiology ; Cytosol ; Decapodiformes ; Dyneins - chemistry ; Dyneins - physiology ; Kinesin - chemistry ; Kinesin - physiology ; Kinetics ; Lipids ; Liposomes ; Loligo ; Marine ; Microtubules ; Microtubules - drug effects ; Microtubules - physiology ; Mollusks ; Motors ; Neurons ; Organelles ; Protein Binding ; Schnapps</subject><ispartof>The Journal of cell biology, 1996-10, Vol.135 (2), p.383-397</ispartof><rights>Copyright 1996 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Oct 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-1a178e5630c3b12e5306ecba5b43163543f84f19da43d963ab9a8aed59249513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8896596$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muresan, Virgil</creatorcontrib><creatorcontrib>Godek, Chris P.</creatorcontrib><creatorcontrib>Reese, Thomas S.</creatorcontrib><creatorcontrib>Schnapp, Bruce J.</creatorcontrib><title>Plus-End Motors Override Minus-End Motors during Transport of Squid Axon Vesicles on Microtubules</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5′-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol.</description><subject>Adenylyl Imidodiphosphate - pharmacology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Axons</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Cellular biology</subject><subject>Cytoplasm - physiology</subject><subject>Cytosol</subject><subject>Decapodiformes</subject><subject>Dyneins - chemistry</subject><subject>Dyneins - physiology</subject><subject>Kinesin - chemistry</subject><subject>Kinesin - physiology</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Loligo</subject><subject>Marine</subject><subject>Microtubules</subject><subject>Microtubules - drug effects</subject><subject>Microtubules - physiology</subject><subject>Mollusks</subject><subject>Motors</subject><subject>Neurons</subject><subject>Organelles</subject><subject>Protein Binding</subject><subject>Schnapps</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rHCEYh6U0pNu0x95akBx6m42vX6OXQgjpB2RJoUuv4sw4qcusbnQM7X9fwy5pk0tOKr-Hn_o-CL0DsgSi2Nmm75bAxJIumWIv0AIEJ40CTl6iBSEUGi2oeIVe57whhPCWs2N0rJSWQssFst-nkpvLMOBVnGPK-PrOpeQHh1c-PE6Gkny4wetkQ97FNOM44h-3xQ_4_HcM-KfLvp9cxnW_8n2Kc-lKPb9BR6Odsnt7WE_Q-vPl-uJrc3X95dvF-VXTC9rODVholROSkZ51QJ1gRLq-s6LjDCQTnI2Kj6AHy9mgJbOdtsq6QWjKtQB2gj7ta3el27qhd2FOdjK75Lc2_THRevM4Cf6XuYl3hgIFwmkt-HgoSPG2uDybrc-9myYbXCzZtIqrFjR5FgShAZS-bzx9Am5iSaEOoV7aEim4lBVq9lCdWM7JjQ9PBmLuBZsq2FTBhpoquPIf_v_nA30wWvP3-3yTq7V_ZRLaeiX7CyZ9qx4</recordid><startdate>19961001</startdate><enddate>19961001</enddate><creator>Muresan, Virgil</creator><creator>Godek, Chris P.</creator><creator>Reese, Thomas S.</creator><creator>Schnapp, Bruce J.</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961001</creationdate><title>Plus-End Motors Override Minus-End Motors during Transport of Squid Axon Vesicles on Microtubules</title><author>Muresan, Virgil ; Godek, Chris P. ; Reese, Thomas S. ; Schnapp, Bruce J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-1a178e5630c3b12e5306ecba5b43163543f84f19da43d963ab9a8aed59249513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adenylyl Imidodiphosphate - pharmacology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Axons</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Cellular biology</topic><topic>Cytoplasm - physiology</topic><topic>Cytosol</topic><topic>Decapodiformes</topic><topic>Dyneins - chemistry</topic><topic>Dyneins - physiology</topic><topic>Kinesin - chemistry</topic><topic>Kinesin - physiology</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Loligo</topic><topic>Marine</topic><topic>Microtubules</topic><topic>Microtubules - drug effects</topic><topic>Microtubules - physiology</topic><topic>Mollusks</topic><topic>Motors</topic><topic>Neurons</topic><topic>Organelles</topic><topic>Protein Binding</topic><topic>Schnapps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muresan, Virgil</creatorcontrib><creatorcontrib>Godek, Chris P.</creatorcontrib><creatorcontrib>Reese, Thomas S.</creatorcontrib><creatorcontrib>Schnapp, Bruce J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muresan, Virgil</au><au>Godek, Chris P.</au><au>Reese, Thomas S.</au><au>Schnapp, Bruce J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plus-End Motors Override Minus-End Motors during Transport of Squid Axon Vesicles on Microtubules</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>1996-10-01</date><risdate>1996</risdate><volume>135</volume><issue>2</issue><spage>383</spage><epage>397</epage><pages>383-397</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5′-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>8896596</pmid><doi>10.1083/jcb.135.2.383</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 1996-10, Vol.135 (2), p.383-397 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2121042 |
source | Alma/SFX Local Collection |
subjects | Adenylyl Imidodiphosphate - pharmacology Animals Antibodies Axons Axons - drug effects Axons - physiology Cellular biology Cytoplasm - physiology Cytosol Decapodiformes Dyneins - chemistry Dyneins - physiology Kinesin - chemistry Kinesin - physiology Kinetics Lipids Liposomes Loligo Marine Microtubules Microtubules - drug effects Microtubules - physiology Mollusks Motors Neurons Organelles Protein Binding Schnapps |
title | Plus-End Motors Override Minus-End Motors during Transport of Squid Axon Vesicles on Microtubules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plus-End%20Motors%20Override%20Minus-End%20Motors%20during%20Transport%20of%20Squid%20Axon%20Vesicles%20on%20Microtubules&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Muresan,%20Virgil&rft.date=1996-10-01&rft.volume=135&rft.issue=2&rft.spage=383&rft.epage=397&rft.pages=383-397&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.135.2.383&rft_dat=%3Cjstor_pubme%3E1617706%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-1a178e5630c3b12e5306ecba5b43163543f84f19da43d963ab9a8aed59249513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217065466&rft_id=info:pmid/8896596&rft_jstor_id=1617706&rfr_iscdi=true |