Loading…

Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp‐369 → Asn): A mechanism involving one zinc per active site

Using site‐directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp‐369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 1994-11, Vol.3 (11), p.2005-2014
Main Authors: Tibbitts, Thomas T., Xu, Xu, Kantrowitz, Evan R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3
cites cdi_FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3
container_end_page 2014
container_issue 11
container_start_page 2005
container_title Protein science
container_volume 3
creator Tibbitts, Thomas T.
Xu, Xu
Kantrowitz, Evan R.
description Using site‐directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp‐369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000‐fold lower than the value for the wild‐type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p‐nitrophenol phosphate was 2 orders of magnitude lower than for the wild‐type enzyme. Thus the kcal/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp‐369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 Å resolution with an R‐factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X‐ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.
doi_str_mv 10.1002/pro.5560031113
format article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2142653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PRO5560031113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4NY6lq9ehPeUQ-zJpPMj3gQllK1WKiIgrfhbeZNJzqTDEl2ZT158iziX9i_pFO21Hry9AjffD6Px5exJ4IvBef5iyn4ZVGUnEshhLzHFkKVOqt1-fk-W3BdiqyWZf2APYzxC-dciVwessOq4rJW9YL9eWcdJWsioGvBhF1MOEBMYWPSJhD4DhDGTUKX4CSanoI1vUUwfrCAw1ccZh6m3sepx4SR4NkqTpc_fslSw-XP37CK7vlLWMFIpkdn4wjWbf2wte4C_Ix-t87ARAHQJLsliDbRI3bQ4RDp8c08Yp9en3w8fpudnb85PV6dZUbJQmaa5hu6qlK66Kp1QRVVrcJcqkoaJaTM27UmzDWtjdaqLWRVt60whrA1KGuSR-zV3jtt1iO1hlwKODRTsCOGXePRNv8mzvbNhd82uVB5WchZsNwLTPAxBupuWcGb63rmt2_-1jMDT-9uvP1-08ec633-zQ60-4-tef_h_I77CrR8obg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp‐369 → Asn): A mechanism involving one zinc per active site</title><source>PubMed Central</source><creator>Tibbitts, Thomas T. ; Xu, Xu ; Kantrowitz, Evan R.</creator><creatorcontrib>Tibbitts, Thomas T. ; Xu, Xu ; Kantrowitz, Evan R.</creatorcontrib><description>Using site‐directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp‐369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000‐fold lower than the value for the wild‐type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p‐nitrophenol phosphate was 2 orders of magnitude lower than for the wild‐type enzyme. Thus the kcal/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp‐369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 Å resolution with an R‐factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X‐ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.5560031113</identifier><identifier>PMID: 7703848</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Alanine - chemistry ; Alkaline Phosphatase - chemistry ; Alkaline Phosphatase - metabolism ; Asparagine - chemistry ; Aspartic Acid - chemistry ; Binding Sites ; catalytic mechanisms ; Crystallography, X-Ray ; Escherichia coli - enzymology ; Kinetics ; metalloenzymes ; Mutagenesis, Site-Directed - genetics ; Protein Binding ; Protein Structure, Tertiary ; protein structure‐function ; site‐specific mutagenesis ; X‐ray diffraction ; Zinc - metabolism</subject><ispartof>Protein science, 1994-11, Vol.3 (11), p.2005-2014</ispartof><rights>Copyright © 1994 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3</citedby><cites>FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142653/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2142653/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7703848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tibbitts, Thomas T.</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><creatorcontrib>Kantrowitz, Evan R.</creatorcontrib><title>Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp‐369 → Asn): A mechanism involving one zinc per active site</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Using site‐directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp‐369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000‐fold lower than the value for the wild‐type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p‐nitrophenol phosphate was 2 orders of magnitude lower than for the wild‐type enzyme. Thus the kcal/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp‐369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 Å resolution with an R‐factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X‐ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.</description><subject>Alanine - chemistry</subject><subject>Alkaline Phosphatase - chemistry</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Asparagine - chemistry</subject><subject>Aspartic Acid - chemistry</subject><subject>Binding Sites</subject><subject>catalytic mechanisms</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - enzymology</subject><subject>Kinetics</subject><subject>metalloenzymes</subject><subject>Mutagenesis, Site-Directed - genetics</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>protein structure‐function</subject><subject>site‐specific mutagenesis</subject><subject>X‐ray diffraction</subject><subject>Zinc - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkc9rFDEUx4NY6lq9ehPeUQ-zJpPMj3gQllK1WKiIgrfhbeZNJzqTDEl2ZT158iziX9i_pFO21Hry9AjffD6Px5exJ4IvBef5iyn4ZVGUnEshhLzHFkKVOqt1-fk-W3BdiqyWZf2APYzxC-dciVwessOq4rJW9YL9eWcdJWsioGvBhF1MOEBMYWPSJhD4DhDGTUKX4CSanoI1vUUwfrCAw1ccZh6m3sepx4SR4NkqTpc_fslSw-XP37CK7vlLWMFIpkdn4wjWbf2wte4C_Ix-t87ARAHQJLsliDbRI3bQ4RDp8c08Yp9en3w8fpudnb85PV6dZUbJQmaa5hu6qlK66Kp1QRVVrcJcqkoaJaTM27UmzDWtjdaqLWRVt60whrA1KGuSR-zV3jtt1iO1hlwKODRTsCOGXePRNv8mzvbNhd82uVB5WchZsNwLTPAxBupuWcGb63rmt2_-1jMDT-9uvP1-08ec633-zQ60-4-tef_h_I77CrR8obg</recordid><startdate>199411</startdate><enddate>199411</enddate><creator>Tibbitts, Thomas T.</creator><creator>Xu, Xu</creator><creator>Kantrowitz, Evan R.</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>199411</creationdate><title>Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp‐369 → Asn): A mechanism involving one zinc per active site</title><author>Tibbitts, Thomas T. ; Xu, Xu ; Kantrowitz, Evan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Alanine - chemistry</topic><topic>Alkaline Phosphatase - chemistry</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Asparagine - chemistry</topic><topic>Aspartic Acid - chemistry</topic><topic>Binding Sites</topic><topic>catalytic mechanisms</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - enzymology</topic><topic>Kinetics</topic><topic>metalloenzymes</topic><topic>Mutagenesis, Site-Directed - genetics</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>protein structure‐function</topic><topic>site‐specific mutagenesis</topic><topic>X‐ray diffraction</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tibbitts, Thomas T.</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><creatorcontrib>Kantrowitz, Evan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tibbitts, Thomas T.</au><au>Xu, Xu</au><au>Kantrowitz, Evan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp‐369 → Asn): A mechanism involving one zinc per active site</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>1994-11</date><risdate>1994</risdate><volume>3</volume><issue>11</issue><spage>2005</spage><epage>2014</epage><pages>2005-2014</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Using site‐directed mutagenesis, an aspartate side chain involved in binding metal ions in the active site of Escherichia coli alkaline phosphatase (Asp‐369) was replaced, alternately, by asparagine (D369N) and by alanine (D369A). The purified mutant enzymes showed reduced turnover rates (kcat) and increased Michaelis constants (Km). The kcat for the D369A enzyme was 5,000‐fold lower than the value for the wild‐type enzyme. The D369N enzyme required Zn2+ in millimolar concentrations to become fully active; even under these conditions the kcat measured for hydrolysis of p‐nitrophenol phosphate was 2 orders of magnitude lower than for the wild‐type enzyme. Thus the kcal/Km ratios showed that catalysis is 50 times less efficient when the carboxylate side chain of Asp‐369 is replaced by the corresponding amide; and activity is reduced to near nonenzymic levels when the carboxylate is replaced by a methyl group. The crystal structure of D369N, solved to 2.5 Å resolution with an R‐factor of 0.189, showed vacancies at 2 of the 3 metal binding sites. On the basis of the kinetic results and the refined X‐ray coordinates, a reaction mechanism is proposed for phosphate ester hydrolysis by the D369N enzyme involving only 1 metal with the possible assistance of a histidine side chain.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>7703848</pmid><doi>10.1002/pro.5560031113</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 1994-11, Vol.3 (11), p.2005-2014
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2142653
source PubMed Central
subjects Alanine - chemistry
Alkaline Phosphatase - chemistry
Alkaline Phosphatase - metabolism
Asparagine - chemistry
Aspartic Acid - chemistry
Binding Sites
catalytic mechanisms
Crystallography, X-Ray
Escherichia coli - enzymology
Kinetics
metalloenzymes
Mutagenesis, Site-Directed - genetics
Protein Binding
Protein Structure, Tertiary
protein structure‐function
site‐specific mutagenesis
X‐ray diffraction
Zinc - metabolism
title Kinetics and crystal structure of a mutant Escherichia coli alkaline phosphatase (Asp‐369 → Asn): A mechanism involving one zinc per active site
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20and%20crystal%20structure%20of%20a%20mutant%20Escherichia%20coli%20alkaline%20phosphatase%20(Asp%E2%80%90369%20%E2%86%92%20Asn):%20A%20mechanism%20involving%20one%20zinc%20per%20active%20site&rft.jtitle=Protein%20science&rft.au=Tibbitts,%20Thomas%20T.&rft.date=1994-11&rft.volume=3&rft.issue=11&rft.spage=2005&rft.epage=2014&rft.pages=2005-2014&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.5560031113&rft_dat=%3Cwiley_pubme%3EPRO5560031113%3C/wiley_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4353-9e384f77495f7b5e7e7d4a23473c41332db9ea29ebc994d5378dd1cceadca38e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/7703848&rfr_iscdi=true