Loading…
On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions
This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reacta...
Saved in:
Published in: | Protein science 1997-06, Vol.6 (6), p.1293-1301 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3 |
container_end_page | 1301 |
container_issue | 6 |
container_start_page | 1293 |
container_title | Protein science |
container_volume | 6 |
creator | Froloff, Nicolas Windemuth, Andreas Honig, Barry |
description | This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small ( |
doi_str_mv | 10.1002/pro.5560060617 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891873965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi1EVZbClRuST4hLtnbi-A8HpGpFaaVWixBI3CzHmewaJXawHVAvFY_AM_IkZLWr0l7gNPJ8v_k04w-hF5QsKSHl6RjDsq45IZxwKh6hBWVcFVLxL4_RgihOC1lx-QQ9TekrIYTRsjpGx4oqRqVaoNu1x3kL2JreTr3JLngcOtw43zq_wV0EwOAhbhwkPKVdzwafnZ-mAQ-Qt6FNb_DZOPbO7qdzwNcXK2x7kxK-xPN-GZz__fPXCGN2LWDnM0Rjd3B6ho460yd4fqgn6PP5u0-ri-Jq_f5ydXZV2LpiomglpVRYaEzZGWY41JbVkjHZiM4qS6GbD1Ndw6EyRtatqGxZMQukJa0oaVedoLd733FqBmgt-BxNr8foBhNvdDBOP1S82-pN-K5LyipRytng1cEghm8TpKwHlyz0vfEQpqSFIoJQUs_g63-C869TKSrFd-hyj9oYUorQ3e1Did6FO7-D_hvuPPDy_hV3-CHNWVd7_Yfr4eY_bvrDx_U97z_ATbWV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891873965</pqid></control><display><type>article</type><title>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</title><source>Wiley</source><source>PubMed Central</source><creator>Froloff, Nicolas ; Windemuth, Andreas ; Honig, Barry</creator><creatorcontrib>Froloff, Nicolas ; Windemuth, Andreas ; Honig, Barry</creatorcontrib><description>This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (<0.3 and <2.7 kcal/mol for the H‐2Kb and HLA‐A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (<4.4 and <5.2 kcal/mol, respectively) although the relative peptide binding affinities of H‐2Kb and HLA‐A2 are not reproduced. For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.5560060617</identifier><identifier>PMID: 9194189</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; binding free energy ; Computer Simulation ; H-2 Antigens - chemistry ; H-2 Antigens - metabolism ; Histocompatibility Antigens Class I - chemistry ; Histocompatibility Antigens Class I - metabolism ; HLA-A2 Antigen - chemistry ; HLA-A2 Antigen - metabolism ; Humans ; hydrophobic effect ; Major Histocompatibility Complex ; Mice ; Models, Chemical ; Peptides - chemistry ; Peptides - metabolism ; Poisson Distribution ; Poisson‐Boltzmann electrostatics ; Protein Binding ; protein‐peptide interactions ; Sensitivity and Specificity ; solvation free energy ; Solvents - chemistry ; Static Electricity ; Thermodynamics ; Water - chemistry</subject><ispartof>Protein science, 1997-06, Vol.6 (6), p.1293-1301</ispartof><rights>Copyright © 2000 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</citedby><cites>FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143728/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143728/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9194189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Froloff, Nicolas</creatorcontrib><creatorcontrib>Windemuth, Andreas</creatorcontrib><creatorcontrib>Honig, Barry</creatorcontrib><title>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (<0.3 and <2.7 kcal/mol for the H‐2Kb and HLA‐A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (<4.4 and <5.2 kcal/mol, respectively) although the relative peptide binding affinities of H‐2Kb and HLA‐A2 are not reproduced. For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.</description><subject>Animals</subject><subject>binding free energy</subject><subject>Computer Simulation</subject><subject>H-2 Antigens - chemistry</subject><subject>H-2 Antigens - metabolism</subject><subject>Histocompatibility Antigens Class I - chemistry</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>HLA-A2 Antigen - chemistry</subject><subject>HLA-A2 Antigen - metabolism</subject><subject>Humans</subject><subject>hydrophobic effect</subject><subject>Major Histocompatibility Complex</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Poisson Distribution</subject><subject>Poisson‐Boltzmann electrostatics</subject><subject>Protein Binding</subject><subject>protein‐peptide interactions</subject><subject>Sensitivity and Specificity</subject><subject>solvation free energy</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi1EVZbClRuST4hLtnbi-A8HpGpFaaVWixBI3CzHmewaJXawHVAvFY_AM_IkZLWr0l7gNPJ8v_k04w-hF5QsKSHl6RjDsq45IZxwKh6hBWVcFVLxL4_RgihOC1lx-QQ9TekrIYTRsjpGx4oqRqVaoNu1x3kL2JreTr3JLngcOtw43zq_wV0EwOAhbhwkPKVdzwafnZ-mAQ-Qt6FNb_DZOPbO7qdzwNcXK2x7kxK-xPN-GZz__fPXCGN2LWDnM0Rjd3B6ho460yd4fqgn6PP5u0-ri-Jq_f5ydXZV2LpiomglpVRYaEzZGWY41JbVkjHZiM4qS6GbD1Ndw6EyRtatqGxZMQukJa0oaVedoLd733FqBmgt-BxNr8foBhNvdDBOP1S82-pN-K5LyipRytng1cEghm8TpKwHlyz0vfEQpqSFIoJQUs_g63-C869TKSrFd-hyj9oYUorQ3e1Did6FO7-D_hvuPPDy_hV3-CHNWVd7_Yfr4eY_bvrDx_U97z_ATbWV</recordid><startdate>199706</startdate><enddate>199706</enddate><creator>Froloff, Nicolas</creator><creator>Windemuth, Andreas</creator><creator>Honig, Barry</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199706</creationdate><title>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</title><author>Froloff, Nicolas ; Windemuth, Andreas ; Honig, Barry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>binding free energy</topic><topic>Computer Simulation</topic><topic>H-2 Antigens - chemistry</topic><topic>H-2 Antigens - metabolism</topic><topic>Histocompatibility Antigens Class I - chemistry</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>HLA-A2 Antigen - chemistry</topic><topic>HLA-A2 Antigen - metabolism</topic><topic>Humans</topic><topic>hydrophobic effect</topic><topic>Major Histocompatibility Complex</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Poisson Distribution</topic><topic>Poisson‐Boltzmann electrostatics</topic><topic>Protein Binding</topic><topic>protein‐peptide interactions</topic><topic>Sensitivity and Specificity</topic><topic>solvation free energy</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froloff, Nicolas</creatorcontrib><creatorcontrib>Windemuth, Andreas</creatorcontrib><creatorcontrib>Honig, Barry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froloff, Nicolas</au><au>Windemuth, Andreas</au><au>Honig, Barry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>1997-06</date><risdate>1997</risdate><volume>6</volume><issue>6</issue><spage>1293</spage><epage>1301</epage><pages>1293-1301</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (<0.3 and <2.7 kcal/mol for the H‐2Kb and HLA‐A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (<4.4 and <5.2 kcal/mol, respectively) although the relative peptide binding affinities of H‐2Kb and HLA‐A2 are not reproduced. For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>9194189</pmid><doi>10.1002/pro.5560060617</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 1997-06, Vol.6 (6), p.1293-1301 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143728 |
source | Wiley; PubMed Central |
subjects | Animals binding free energy Computer Simulation H-2 Antigens - chemistry H-2 Antigens - metabolism Histocompatibility Antigens Class I - chemistry Histocompatibility Antigens Class I - metabolism HLA-A2 Antigen - chemistry HLA-A2 Antigen - metabolism Humans hydrophobic effect Major Histocompatibility Complex Mice Models, Chemical Peptides - chemistry Peptides - metabolism Poisson Distribution Poisson‐Boltzmann electrostatics Protein Binding protein‐peptide interactions Sensitivity and Specificity solvation free energy Solvents - chemistry Static Electricity Thermodynamics Water - chemistry |
title | On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20calculation%20of%20binding%20free%20energies%20using%20continuum%20methods:%20Application%20to%20MHC%20class%20I%20protein%E2%80%90peptide%20interactions&rft.jtitle=Protein%20science&rft.au=Froloff,%20Nicolas&rft.date=1997-06&rft.volume=6&rft.issue=6&rft.spage=1293&rft.epage=1301&rft.pages=1293-1301&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.5560060617&rft_dat=%3Cproquest_pubme%3E1891873965%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891873965&rft_id=info:pmid/9194189&rfr_iscdi=true |