Loading…

On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions

This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reacta...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 1997-06, Vol.6 (6), p.1293-1301
Main Authors: Froloff, Nicolas, Windemuth, Andreas, Honig, Barry
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3
cites cdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3
container_end_page 1301
container_issue 6
container_start_page 1293
container_title Protein science
container_volume 6
creator Froloff, Nicolas
Windemuth, Andreas
Honig, Barry
description This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (
doi_str_mv 10.1002/pro.5560060617
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1891873965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxi1EVZbClRuST4hLtnbi-A8HpGpFaaVWixBI3CzHmewaJXawHVAvFY_AM_IkZLWr0l7gNPJ8v_k04w-hF5QsKSHl6RjDsq45IZxwKh6hBWVcFVLxL4_RgihOC1lx-QQ9TekrIYTRsjpGx4oqRqVaoNu1x3kL2JreTr3JLngcOtw43zq_wV0EwOAhbhwkPKVdzwafnZ-mAQ-Qt6FNb_DZOPbO7qdzwNcXK2x7kxK-xPN-GZz__fPXCGN2LWDnM0Rjd3B6ho460yd4fqgn6PP5u0-ri-Jq_f5ydXZV2LpiomglpVRYaEzZGWY41JbVkjHZiM4qS6GbD1Ndw6EyRtatqGxZMQukJa0oaVedoLd733FqBmgt-BxNr8foBhNvdDBOP1S82-pN-K5LyipRytng1cEghm8TpKwHlyz0vfEQpqSFIoJQUs_g63-C869TKSrFd-hyj9oYUorQ3e1Did6FO7-D_hvuPPDy_hV3-CHNWVd7_Yfr4eY_bvrDx_U97z_ATbWV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1891873965</pqid></control><display><type>article</type><title>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</title><source>Wiley</source><source>PubMed Central</source><creator>Froloff, Nicolas ; Windemuth, Andreas ; Honig, Barry</creator><creatorcontrib>Froloff, Nicolas ; Windemuth, Andreas ; Honig, Barry</creatorcontrib><description>This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (&lt;0.3 and &lt;2.7 kcal/mol for the H‐2Kb and HLA‐A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (&lt;4.4 and &lt;5.2 kcal/mol, respectively) although the relative peptide binding affinities of H‐2Kb and HLA‐A2 are not reproduced. For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.5560060617</identifier><identifier>PMID: 9194189</identifier><language>eng</language><publisher>Bristol: Cold Spring Harbor Laboratory Press</publisher><subject>Animals ; binding free energy ; Computer Simulation ; H-2 Antigens - chemistry ; H-2 Antigens - metabolism ; Histocompatibility Antigens Class I - chemistry ; Histocompatibility Antigens Class I - metabolism ; HLA-A2 Antigen - chemistry ; HLA-A2 Antigen - metabolism ; Humans ; hydrophobic effect ; Major Histocompatibility Complex ; Mice ; Models, Chemical ; Peptides - chemistry ; Peptides - metabolism ; Poisson Distribution ; Poisson‐Boltzmann electrostatics ; Protein Binding ; protein‐peptide interactions ; Sensitivity and Specificity ; solvation free energy ; Solvents - chemistry ; Static Electricity ; Thermodynamics ; Water - chemistry</subject><ispartof>Protein science, 1997-06, Vol.6 (6), p.1293-1301</ispartof><rights>Copyright © 2000 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</citedby><cites>FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143728/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143728/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9194189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Froloff, Nicolas</creatorcontrib><creatorcontrib>Windemuth, Andreas</creatorcontrib><creatorcontrib>Honig, Barry</creatorcontrib><title>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (&lt;0.3 and &lt;2.7 kcal/mol for the H‐2Kb and HLA‐A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (&lt;4.4 and &lt;5.2 kcal/mol, respectively) although the relative peptide binding affinities of H‐2Kb and HLA‐A2 are not reproduced. For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.</description><subject>Animals</subject><subject>binding free energy</subject><subject>Computer Simulation</subject><subject>H-2 Antigens - chemistry</subject><subject>H-2 Antigens - metabolism</subject><subject>Histocompatibility Antigens Class I - chemistry</subject><subject>Histocompatibility Antigens Class I - metabolism</subject><subject>HLA-A2 Antigen - chemistry</subject><subject>HLA-A2 Antigen - metabolism</subject><subject>Humans</subject><subject>hydrophobic effect</subject><subject>Major Histocompatibility Complex</subject><subject>Mice</subject><subject>Models, Chemical</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Poisson Distribution</subject><subject>Poisson‐Boltzmann electrostatics</subject><subject>Protein Binding</subject><subject>protein‐peptide interactions</subject><subject>Sensitivity and Specificity</subject><subject>solvation free energy</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxi1EVZbClRuST4hLtnbi-A8HpGpFaaVWixBI3CzHmewaJXawHVAvFY_AM_IkZLWr0l7gNPJ8v_k04w-hF5QsKSHl6RjDsq45IZxwKh6hBWVcFVLxL4_RgihOC1lx-QQ9TekrIYTRsjpGx4oqRqVaoNu1x3kL2JreTr3JLngcOtw43zq_wV0EwOAhbhwkPKVdzwafnZ-mAQ-Qt6FNb_DZOPbO7qdzwNcXK2x7kxK-xPN-GZz__fPXCGN2LWDnM0Rjd3B6ho460yd4fqgn6PP5u0-ri-Jq_f5ydXZV2LpiomglpVRYaEzZGWY41JbVkjHZiM4qS6GbD1Ndw6EyRtatqGxZMQukJa0oaVedoLd733FqBmgt-BxNr8foBhNvdDBOP1S82-pN-K5LyipRytng1cEghm8TpKwHlyz0vfEQpqSFIoJQUs_g63-C869TKSrFd-hyj9oYUorQ3e1Did6FO7-D_hvuPPDy_hV3-CHNWVd7_Yfr4eY_bvrDx_U97z_ATbWV</recordid><startdate>199706</startdate><enddate>199706</enddate><creator>Froloff, Nicolas</creator><creator>Windemuth, Andreas</creator><creator>Honig, Barry</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199706</creationdate><title>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</title><author>Froloff, Nicolas ; Windemuth, Andreas ; Honig, Barry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Animals</topic><topic>binding free energy</topic><topic>Computer Simulation</topic><topic>H-2 Antigens - chemistry</topic><topic>H-2 Antigens - metabolism</topic><topic>Histocompatibility Antigens Class I - chemistry</topic><topic>Histocompatibility Antigens Class I - metabolism</topic><topic>HLA-A2 Antigen - chemistry</topic><topic>HLA-A2 Antigen - metabolism</topic><topic>Humans</topic><topic>hydrophobic effect</topic><topic>Major Histocompatibility Complex</topic><topic>Mice</topic><topic>Models, Chemical</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Poisson Distribution</topic><topic>Poisson‐Boltzmann electrostatics</topic><topic>Protein Binding</topic><topic>protein‐peptide interactions</topic><topic>Sensitivity and Specificity</topic><topic>solvation free energy</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froloff, Nicolas</creatorcontrib><creatorcontrib>Windemuth, Andreas</creatorcontrib><creatorcontrib>Honig, Barry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froloff, Nicolas</au><au>Windemuth, Andreas</au><au>Honig, Barry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>1997-06</date><risdate>1997</risdate><volume>6</volume><issue>6</issue><spage>1293</spage><epage>1301</epage><pages>1293-1301</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>This paper describes a methodology to calculate the binding free energy (ΔG) of a protein‐ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non‐electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson‐Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy‐surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side‐chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H‐2Kb with three distinct peptides, and to the human MHC class I protein HLA‐A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (&lt;0.3 and &lt;2.7 kcal/mol for the H‐2Kb and HLA‐A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (&lt;4.4 and &lt;5.2 kcal/mol, respectively) although the relative peptide binding affinities of H‐2Kb and HLA‐A2 are not reproduced. For all protein‐peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.</abstract><cop>Bristol</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>9194189</pmid><doi>10.1002/pro.5560060617</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 1997-06, Vol.6 (6), p.1293-1301
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2143728
source Wiley; PubMed Central
subjects Animals
binding free energy
Computer Simulation
H-2 Antigens - chemistry
H-2 Antigens - metabolism
Histocompatibility Antigens Class I - chemistry
Histocompatibility Antigens Class I - metabolism
HLA-A2 Antigen - chemistry
HLA-A2 Antigen - metabolism
Humans
hydrophobic effect
Major Histocompatibility Complex
Mice
Models, Chemical
Peptides - chemistry
Peptides - metabolism
Poisson Distribution
Poisson‐Boltzmann electrostatics
Protein Binding
protein‐peptide interactions
Sensitivity and Specificity
solvation free energy
Solvents - chemistry
Static Electricity
Thermodynamics
Water - chemistry
title On the calculation of binding free energies using continuum methods: Application to MHC class I protein‐peptide interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20calculation%20of%20binding%20free%20energies%20using%20continuum%20methods:%20Application%20to%20MHC%20class%20I%20protein%E2%80%90peptide%20interactions&rft.jtitle=Protein%20science&rft.au=Froloff,%20Nicolas&rft.date=1997-06&rft.volume=6&rft.issue=6&rft.spage=1293&rft.epage=1301&rft.pages=1293-1301&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.5560060617&rft_dat=%3Cproquest_pubme%3E1891873965%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5347-d81117ceba2fa4a6e5c458448b7fc9c1ef0419fb6e3aa85d73c234ce0d0d721f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1891873965&rft_id=info:pmid/9194189&rfr_iscdi=true