Loading…
Pervasive and Largely Lineage-Specific Adaptive Protein Evolution in the Dosage Compensation Complex of Drosophila melanogaster
Dosage compensation refers to the equalization of X-linked gene transcription among heterogametic and homogametic sexes. In Drosophila, the dosage compensation complex (DCC) mediates the twofold hypertranscription of the single male X chromosome. Loss-of-function mutations at any DCC protein-coding...
Saved in:
Published in: | Genetics (Austin) 2007-11, Vol.177 (3), p.1959-1962 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dosage compensation refers to the equalization of X-linked gene transcription among heterogametic and homogametic sexes. In Drosophila, the dosage compensation complex (DCC) mediates the twofold hypertranscription of the single male X chromosome. Loss-of-function mutations at any DCC protein-coding gene are male lethal. Here we report a population genetic analysis suggesting that four of the five core DCC proteins--MSL1, MSL2, MSL3, and MOF--are evolving under positive selection in D. melanogaster. Within these four proteins, several domains that range in function from X chromosome localization to protein-protein interactions have elevated, D. melanogaster-specific, amino acid divergence. |
---|---|
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1534/genetics.107.079459 |