Loading…
Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53
E2F/DP complexes were originally identified as potent transcriptional activators required for cell proliferation. However, recent studies revised this notion by showing that inactivation of total E2F/DP activity by dominant-negative forms of E2F or DP does not prevent cellular proliferation, but rat...
Saved in:
Published in: | The Journal of cell biology 2005-02, Vol.168 (4), p.553-560 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | E2F/DP complexes were originally identified as potent transcriptional activators required for cell proliferation. However, recent studies revised this notion by showing that inactivation of total E2F/DP activity by dominant-negative forms of E2F or DP does not prevent cellular proliferation, but rather abolishes tumor suppression pathways, such as cellular senescence. These observations suggest that blockage of total E2F/DP activity may increase the risk of cancer. Here, we provide evidence that depletion of DP by RNA interference, but not overexpression of dominant-negative form of E2F, efficiently reduces endogenous E2F/DP activity in human primary cells. Reduction of total E2F/DP activity results in a dramatic decrease in expression of many E2F target genes and causes a senescence-like cell cycle arrest. Importantly, similar results were observed in human cancer cells lacking functional p53 and pRB family proteins. These findings reveal that E2F/DP activity is indeed essential for cell proliferation and its reduction immediately provokes a senescence-like cell cycle arrest. |
---|---|
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.200411093 |