Loading…

Cortactin Is Necessary for E-Cadherin-Mediated Contact Formation and Actin Reorganization

Classical cadherin adhesion molecules are key determinants of cell-cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2004-03, Vol.164 (6), p.899-910
Main Authors: Helwani, Falak M., Kovacs, Eva M., Paterson, Andrew D., Verma, Suzie, Ali, Radiya G., Fanning, Alan S., Weed, Scott A., Yap, Alpha S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Classical cadherin adhesion molecules are key determinants of cell-cell recognition during development and in post-embryonic life. A decisive step in productive cadherin-based recognition is the conversion of nascent adhesions into stable zones of contact. It is increasingly clear that such contact zone extension entails active cooperation between cadherin adhesion and the force-generating capacity of the actin cytoskeleton. Cortactin has recently emerged as an important regulator of actin dynamics in several forms of cell motility. We now report that cortactin is recruited to cell-cell adhesive contacts in response to homophilic cadherin ligation. Notably, cortactin accumulates preferentially, with Arp2/3, at cell margins where adhesive contacts are being extended. Recruitment of cortactin is accompanied by a ligation-dependent biochemical interaction between cortactin and the cadherin adhesive complex. Inhibition of cortactin activity in cells blocked Arp2/3-dependent actin assembly at cadherin adhesive contacts, significantly reduced cadherin adhesive contact zone extension, and perturbed both cell morphology and junctional accumulation of cadherins in polarized epithelia. Together, our findings identify a necessary role for cortactin in the cadherin-actin cooperation that supports productive contact formation.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200309034