Loading…

Molecular Requirements for Actin-Based Lamella Formation in Drosophila S2 Cells

Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we fi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2003-09, Vol.162 (6), p.1079-1088
Main Authors: Rogers, Stephen L., Wiedemann, Ursula, Stuurman, Nico, Vale, Ronald D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200303023