Loading…

Dynamic Instability of Microtubules Is Regulated by Force

Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2003-06, Vol.161 (6), p.1029-1034
Main Authors: Janson, Marcel E., de Dood, Mathilde E., Dogterom, Marileen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563
cites cdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563
container_end_page 1034
container_issue 6
container_start_page 1029
container_title The Journal of cell biology
container_volume 161
creator Janson, Marcel E.
de Dood, Mathilde E.
Dogterom, Marileen
description Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.
doi_str_mv 10.1083/jcb.200301147
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1621658</jstor_id><sourcerecordid>1621658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2qqLssHHurUMSBW2Bsj-PkUgktbLsSCAnB2XKcWZpVNgY7Qdp_j9GuoO1pDu_T05v3GPvO4ZxDKS_Wrj4XABI4R_2FTblCyEuO8JVNAQTPKyXUhB3GuAYA1Ci_sQkXpeAF8imrrra93bQuW_ZxsHXbtcM286vstnXBD2M9dhSzZczu6Wns7EBNVm-zhQ-OjtjBynaRjvd3xh4X1w_z3_nN3a_l_PImdyj5kIuy0BylrJB4BY60qmmlwCqFtqkRGiyBgGrrbKGFbCqUVPJGlbqxWKhCztjPne_zWG-ocdQPwXbmObQbG7bG29b8q_TtH_PkX43gWqZiksHZ3iD4l5HiYDZtdNR1tic_RqMlClmBSuDpf-Daj6FPz717QaUVYoLyHZT6iTHQ6iMJB_O-iEmLmI9FEn_yd_xPej9BAn7sgHUcfPjUiySrUr4BW_qPEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217097544</pqid></control><display><type>article</type><title>Dynamic Instability of Microtubules Is Regulated by Force</title><source>Alma/SFX Local Collection</source><creator>Janson, Marcel E. ; de Dood, Mathilde E. ; Dogterom, Marileen</creator><creatorcontrib>Janson, Marcel E. ; de Dood, Mathilde E. ; Dogterom, Marileen</creatorcontrib><description>Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200301147</identifier><identifier>PMID: 12821641</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animal cells ; Animals ; Arithmetic mean ; Average velocity ; Buckling ; Cattle ; Cell Cycle - physiology ; Cells ; Disasters ; Eukaryotic Cells - metabolism ; Microbiology ; Microscopy ; Microtubule-Associated Proteins - metabolism ; Microtubules ; Microtubules - metabolism ; Nucleation ; Polymerization ; Proteins ; Reaction Time - physiology ; Somatic cells ; Tensile Strength ; Tubulin - metabolism</subject><ispartof>The Journal of cell biology, 2003-06, Vol.161 (6), p.1029-1034</ispartof><rights>Copyright 2003 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jun 23, 2003</rights><rights>Copyright © 2003, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</citedby><cites>FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12821641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janson, Marcel E.</creatorcontrib><creatorcontrib>de Dood, Mathilde E.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><title>Dynamic Instability of Microtubules Is Regulated by Force</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.</description><subject>Animal cells</subject><subject>Animals</subject><subject>Arithmetic mean</subject><subject>Average velocity</subject><subject>Buckling</subject><subject>Cattle</subject><subject>Cell Cycle - physiology</subject><subject>Cells</subject><subject>Disasters</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Microbiology</subject><subject>Microscopy</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Nucleation</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Reaction Time - physiology</subject><subject>Somatic cells</subject><subject>Tensile Strength</subject><subject>Tubulin - metabolism</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkUFP3DAQha2qqLssHHurUMSBW2Bsj-PkUgktbLsSCAnB2XKcWZpVNgY7Qdp_j9GuoO1pDu_T05v3GPvO4ZxDKS_Wrj4XABI4R_2FTblCyEuO8JVNAQTPKyXUhB3GuAYA1Ci_sQkXpeAF8imrrra93bQuW_ZxsHXbtcM286vstnXBD2M9dhSzZczu6Wns7EBNVm-zhQ-OjtjBynaRjvd3xh4X1w_z3_nN3a_l_PImdyj5kIuy0BylrJB4BY60qmmlwCqFtqkRGiyBgGrrbKGFbCqUVPJGlbqxWKhCztjPne_zWG-ocdQPwXbmObQbG7bG29b8q_TtH_PkX43gWqZiksHZ3iD4l5HiYDZtdNR1tic_RqMlClmBSuDpf-Daj6FPz717QaUVYoLyHZT6iTHQ6iMJB_O-iEmLmI9FEn_yd_xPej9BAn7sgHUcfPjUiySrUr4BW_qPEw</recordid><startdate>20030623</startdate><enddate>20030623</enddate><creator>Janson, Marcel E.</creator><creator>de Dood, Mathilde E.</creator><creator>Dogterom, Marileen</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030623</creationdate><title>Dynamic Instability of Microtubules Is Regulated by Force</title><author>Janson, Marcel E. ; de Dood, Mathilde E. ; Dogterom, Marileen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal cells</topic><topic>Animals</topic><topic>Arithmetic mean</topic><topic>Average velocity</topic><topic>Buckling</topic><topic>Cattle</topic><topic>Cell Cycle - physiology</topic><topic>Cells</topic><topic>Disasters</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Microbiology</topic><topic>Microscopy</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Nucleation</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Reaction Time - physiology</topic><topic>Somatic cells</topic><topic>Tensile Strength</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janson, Marcel E.</creatorcontrib><creatorcontrib>de Dood, Mathilde E.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janson, Marcel E.</au><au>de Dood, Mathilde E.</au><au>Dogterom, Marileen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Instability of Microtubules Is Regulated by Force</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2003-06-23</date><risdate>2003</risdate><volume>161</volume><issue>6</issue><spage>1029</spage><epage>1034</epage><pages>1029-1034</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>12821641</pmid><doi>10.1083/jcb.200301147</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2003-06, Vol.161 (6), p.1029-1034
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173003
source Alma/SFX Local Collection
subjects Animal cells
Animals
Arithmetic mean
Average velocity
Buckling
Cattle
Cell Cycle - physiology
Cells
Disasters
Eukaryotic Cells - metabolism
Microbiology
Microscopy
Microtubule-Associated Proteins - metabolism
Microtubules
Microtubules - metabolism
Nucleation
Polymerization
Proteins
Reaction Time - physiology
Somatic cells
Tensile Strength
Tubulin - metabolism
title Dynamic Instability of Microtubules Is Regulated by Force
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Instability%20of%20Microtubules%20Is%20Regulated%20by%20Force&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Janson,%20Marcel%20E.&rft.date=2003-06-23&rft.volume=161&rft.issue=6&rft.spage=1029&rft.epage=1034&rft.pages=1029-1034&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200301147&rft_dat=%3Cjstor_pubme%3E1621658%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217097544&rft_id=info:pmid/12821641&rft_jstor_id=1621658&rfr_iscdi=true