Loading…
Dynamic Instability of Microtubules Is Regulated by Force
Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of...
Saved in:
Published in: | The Journal of cell biology 2003-06, Vol.161 (6), p.1029-1034 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563 |
---|---|
cites | cdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563 |
container_end_page | 1034 |
container_issue | 6 |
container_start_page | 1029 |
container_title | The Journal of cell biology |
container_volume | 161 |
creator | Janson, Marcel E. de Dood, Mathilde E. Dogterom, Marileen |
description | Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition. |
doi_str_mv | 10.1083/jcb.200301147 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1621658</jstor_id><sourcerecordid>1621658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2qqLssHHurUMSBW2Bsj-PkUgktbLsSCAnB2XKcWZpVNgY7Qdp_j9GuoO1pDu_T05v3GPvO4ZxDKS_Wrj4XABI4R_2FTblCyEuO8JVNAQTPKyXUhB3GuAYA1Ci_sQkXpeAF8imrrra93bQuW_ZxsHXbtcM286vstnXBD2M9dhSzZczu6Wns7EBNVm-zhQ-OjtjBynaRjvd3xh4X1w_z3_nN3a_l_PImdyj5kIuy0BylrJB4BY60qmmlwCqFtqkRGiyBgGrrbKGFbCqUVPJGlbqxWKhCztjPne_zWG-ocdQPwXbmObQbG7bG29b8q_TtH_PkX43gWqZiksHZ3iD4l5HiYDZtdNR1tic_RqMlClmBSuDpf-Daj6FPz717QaUVYoLyHZT6iTHQ6iMJB_O-iEmLmI9FEn_yd_xPej9BAn7sgHUcfPjUiySrUr4BW_qPEw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217097544</pqid></control><display><type>article</type><title>Dynamic Instability of Microtubules Is Regulated by Force</title><source>Alma/SFX Local Collection</source><creator>Janson, Marcel E. ; de Dood, Mathilde E. ; Dogterom, Marileen</creator><creatorcontrib>Janson, Marcel E. ; de Dood, Mathilde E. ; Dogterom, Marileen</creatorcontrib><description>Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.200301147</identifier><identifier>PMID: 12821641</identifier><identifier>CODEN: JCLBA3</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animal cells ; Animals ; Arithmetic mean ; Average velocity ; Buckling ; Cattle ; Cell Cycle - physiology ; Cells ; Disasters ; Eukaryotic Cells - metabolism ; Microbiology ; Microscopy ; Microtubule-Associated Proteins - metabolism ; Microtubules ; Microtubules - metabolism ; Nucleation ; Polymerization ; Proteins ; Reaction Time - physiology ; Somatic cells ; Tensile Strength ; Tubulin - metabolism</subject><ispartof>The Journal of cell biology, 2003-06, Vol.161 (6), p.1029-1034</ispartof><rights>Copyright 2003 The Rockefeller University Press</rights><rights>Copyright Rockefeller University Press Jun 23, 2003</rights><rights>Copyright © 2003, The Rockefeller University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</citedby><cites>FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12821641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Janson, Marcel E.</creatorcontrib><creatorcontrib>de Dood, Mathilde E.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><title>Dynamic Instability of Microtubules Is Regulated by Force</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.</description><subject>Animal cells</subject><subject>Animals</subject><subject>Arithmetic mean</subject><subject>Average velocity</subject><subject>Buckling</subject><subject>Cattle</subject><subject>Cell Cycle - physiology</subject><subject>Cells</subject><subject>Disasters</subject><subject>Eukaryotic Cells - metabolism</subject><subject>Microbiology</subject><subject>Microscopy</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Microtubules</subject><subject>Microtubules - metabolism</subject><subject>Nucleation</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Reaction Time - physiology</subject><subject>Somatic cells</subject><subject>Tensile Strength</subject><subject>Tubulin - metabolism</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpdkUFP3DAQha2qqLssHHurUMSBW2Bsj-PkUgktbLsSCAnB2XKcWZpVNgY7Qdp_j9GuoO1pDu_T05v3GPvO4ZxDKS_Wrj4XABI4R_2FTblCyEuO8JVNAQTPKyXUhB3GuAYA1Ci_sQkXpeAF8imrrra93bQuW_ZxsHXbtcM286vstnXBD2M9dhSzZczu6Wns7EBNVm-zhQ-OjtjBynaRjvd3xh4X1w_z3_nN3a_l_PImdyj5kIuy0BylrJB4BY60qmmlwCqFtqkRGiyBgGrrbKGFbCqUVPJGlbqxWKhCztjPne_zWG-ocdQPwXbmObQbG7bG29b8q_TtH_PkX43gWqZiksHZ3iD4l5HiYDZtdNR1tic_RqMlClmBSuDpf-Daj6FPz717QaUVYoLyHZT6iTHQ6iMJB_O-iEmLmI9FEn_yd_xPej9BAn7sgHUcfPjUiySrUr4BW_qPEw</recordid><startdate>20030623</startdate><enddate>20030623</enddate><creator>Janson, Marcel E.</creator><creator>de Dood, Mathilde E.</creator><creator>Dogterom, Marileen</creator><general>Rockefeller University Press</general><general>The Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030623</creationdate><title>Dynamic Instability of Microtubules Is Regulated by Force</title><author>Janson, Marcel E. ; de Dood, Mathilde E. ; Dogterom, Marileen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animal cells</topic><topic>Animals</topic><topic>Arithmetic mean</topic><topic>Average velocity</topic><topic>Buckling</topic><topic>Cattle</topic><topic>Cell Cycle - physiology</topic><topic>Cells</topic><topic>Disasters</topic><topic>Eukaryotic Cells - metabolism</topic><topic>Microbiology</topic><topic>Microscopy</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Microtubules</topic><topic>Microtubules - metabolism</topic><topic>Nucleation</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Reaction Time - physiology</topic><topic>Somatic cells</topic><topic>Tensile Strength</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janson, Marcel E.</creatorcontrib><creatorcontrib>de Dood, Mathilde E.</creatorcontrib><creatorcontrib>Dogterom, Marileen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janson, Marcel E.</au><au>de Dood, Mathilde E.</au><au>Dogterom, Marileen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Instability of Microtubules Is Regulated by Force</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2003-06-23</date><risdate>2003</risdate><volume>161</volume><issue>6</issue><spage>1029</spage><epage>1034</epage><pages>1029-1034</pages><issn>0021-9525</issn><eissn>1540-8140</eissn><coden>JCLBA3</coden><abstract>Microtubules are long filamentous protein structures that randomly alternate between periods of elongation and shortening in a process termed dynamic instability. The average time a microtubule spends in an elongation phase, known as the catastrophe time, is regulated by the biochemical machinery of the cell throughout the cell cycle. In this light, observed changes in the catastrophe time near cellular boundaries may be attributed to regulatory effects of localized proteins. Here, we argue that the pushing force generated by a microtubule when growing against a cellular object may itself provide a regulatory mechanism of the catastrophe time. We observed an up to 20-fold, force-dependent decrease in the catastrophe time when microtubules grown from purified tubulin were polymerizing against microfabricated barriers. Comparison with catastrophe times for microtubules growing freely at different tubulin concentrations leads us to conclude that force reduces the catastrophe time only by limiting the rate of tubulin addition.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>12821641</pmid><doi>10.1083/jcb.200301147</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9525 |
ispartof | The Journal of cell biology, 2003-06, Vol.161 (6), p.1029-1034 |
issn | 0021-9525 1540-8140 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2173003 |
source | Alma/SFX Local Collection |
subjects | Animal cells Animals Arithmetic mean Average velocity Buckling Cattle Cell Cycle - physiology Cells Disasters Eukaryotic Cells - metabolism Microbiology Microscopy Microtubule-Associated Proteins - metabolism Microtubules Microtubules - metabolism Nucleation Polymerization Proteins Reaction Time - physiology Somatic cells Tensile Strength Tubulin - metabolism |
title | Dynamic Instability of Microtubules Is Regulated by Force |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Instability%20of%20Microtubules%20Is%20Regulated%20by%20Force&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Janson,%20Marcel%20E.&rft.date=2003-06-23&rft.volume=161&rft.issue=6&rft.spage=1029&rft.epage=1034&rft.pages=1029-1034&rft.issn=0021-9525&rft.eissn=1540-8140&rft.coden=JCLBA3&rft_id=info:doi/10.1083/jcb.200301147&rft_dat=%3Cjstor_pubme%3E1621658%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-2867143394e190ce75bef50a554adb40d480e0ebaca6723d943e81d587da46563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217097544&rft_id=info:pmid/12821641&rft_jstor_id=1621658&rfr_iscdi=true |