Loading…

Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner

Caspase activation in target cells is a major function of granzyme B (grB) during cytotoxic lymphocyte granule-induced apoptosis. grB-mediated cell death can occur in the absence of active caspases, and the molecular targets responsible for this additional pathway remain poorly defined. Apoptotic pl...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of experimental medicine 2005-02, Vol.201 (3), p.465-471
Main Authors: Sebbagh, Michael, Hamelin, Jocelyne, Bertoglio, Jacques, Solary, Eric, Bréard, Jacqueline
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Caspase activation in target cells is a major function of granzyme B (grB) during cytotoxic lymphocyte granule-induced apoptosis. grB-mediated cell death can occur in the absence of active caspases, and the molecular targets responsible for this additional pathway remain poorly defined. Apoptotic plasma membrane blebbing is caspase independent during granule exocytosis-mediated cell death, whereas in other instances, this event is a consequence of the cleavage by caspases of the Rho effector, Rho-associated coiled coil-containing protein kinase (ROCK) I. We show here that grB directly cleaves ROCK II, a ROCK family member encoded by a separate gene and closely related to ROCK I, and this causes constitutive kinase activity and bleb formation. For the first time, two proteins of the same family are found to be specifically cleaved by either a caspase or grB, thus defining two independent pathways with similar phenotypic consequences in the cells. During granule-induced cell death, ROCK II cleavage by grB would overcome, for this apoptotic feature, the consequences of deficient caspase activation that may occur in virus-infected or malignant target cells.
ISSN:0022-1007
1540-9538
1892-1007
DOI:10.1084/jem.20031877