Loading…

Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways

Heat shock proteins (HSPs) derived from tumors or virally infected cells can stimulate antigen-specific CD8(+) T cell responses in vitro and in vivo. Although this antigenicity is known to arise from HSP-associated peptides presented to the immune system by major histocompatibility complex (MHC) cla...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of experimental medicine 2000-06, Vol.191 (11), p.1957-1964
Main Authors: Castellino, F, Boucher, P E, Eichelberg, K, Mayhew, M, Rothman, J E, Houghton, A N, Germain, R N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat shock proteins (HSPs) derived from tumors or virally infected cells can stimulate antigen-specific CD8(+) T cell responses in vitro and in vivo. Although this antigenicity is known to arise from HSP-associated peptides presented to the immune system by major histocompatibility complex (MHC) class I molecules, the cell biology underlying this presentation process remains poorly understood. Here we show that HSP 70 binds to the surface of antigen presenting cells by a mechanism with the characteristics of a saturable receptor system. After this membrane interaction, processing and MHC class I presentation of the HSP-associated antigen can occur via either a cytosolic (transporter associated with antigen processing [TAP] and proteasome-dependent) or an endosomal (TAP and proteasome-independent) route, with the preferred pathway determined by the sequence context of the optimal antigenic peptide within the HSP-associated material. These findings not only characterize two highly efficient, specific pathways leading to the conversion of HSP-associated antigens into ligands for CD8(+) T cells, they also imply the existence of a mechanism for receptor-facilitated transmembrane transport of HSP or HSP-associated ligands from the plasma membrane or lumen of endosomes into the cytosol.
ISSN:0022-1007
1540-9538
DOI:10.1084/jem.191.11.1957