Loading…

Function of sural nerve reflexes during human walking

The functions of ipsilateral cutaneous reflexes were studied with short trains of stimuli presented pseudorandomly to the sural nerve during human walking. Electromyograms (EMG) of lower (tibialis anterior (TA), soleus, lateral (LG) and medial (MG) gastrocnemius) and upper leg (vastus lateralis and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 1998-02, Vol.507 (1), p.305-314
Main Authors: Zehr, E. P., Stein, R. B., Komiyama, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The functions of ipsilateral cutaneous reflexes were studied with short trains of stimuli presented pseudorandomly to the sural nerve during human walking. Electromyograms (EMG) of lower (tibialis anterior (TA), soleus, lateral (LG) and medial (MG) gastrocnemius) and upper leg (vastus lateralis and biceps femoris) muscles were recorded, together with ankle, knee and hip joint angles. Net reflex EMG responses were quantified in each of the sixteen parts of the step cycle. The kinematic measurements included ankle eversion- inversion, and ankle, knee and hip flexion-extension. The function of the sural reflexes depended upon the part of the step cycle in which the nerve was stimulated and the intensity of stimulation. During stance, reflexes in MG and TA muscles in response to a medium intensity of stimulation (1.9 × radiating threshold, × RT) were closely associated with ankle eversion and dorsiflexion responses, respectively. These responses could assist in accommodation to uneven terrain that applies pressure to the lateral side of the foot (sural innervation area). Non-noxious, high intensity (2.3 × RT) stimulation resulted in strong suppression of LG and MG during stance which was correlated to a small reduction in ankle plantarflexion. At this higher intensity the response would function to prevent the foot from moving more forcefully onto a potentially harmful obstacle. During swing, ankle dorsiflexion increased and was significantly correlated to the net TA EMG response after both medium and high intensity stimulation. Knee flexion was increased throughout swing at both intensities of stimulation. These responses may serve in an avoidance response in which the swing limb is brought past an obstacle without destabilizing contact. The net EMG and kinematic responses suggest that cutaneous reflexes stabilize human gait against external perturbations produced by an uneven surface in stance or obstacles encountered during swing.
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.1998.305bu.x