Loading…

Bioengineering of improved biomaterials coatings for extracorporeal circulation requires extended observation of blood-biomaterial interaction under flow

Extended use of cardiopulmonary bypass (CPB) systems is often hampered by thrombus formation and infection. Part of these problems relates to imperfect hemocompatibility of the CPB circuitry. The engineering of biomaterial surfaces with genuine long-term hemocompatibility is essentially virgin terri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedicine & biotechnology 2007, Vol.2007 (10), p.29464-29464
Main Authors: Stevens, Kris N J, Aldenhoff, Yvette B J, van der Veen, Frederik H, Maessen, Jos G, Koole, Leo H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extended use of cardiopulmonary bypass (CPB) systems is often hampered by thrombus formation and infection. Part of these problems relates to imperfect hemocompatibility of the CPB circuitry. The engineering of biomaterial surfaces with genuine long-term hemocompatibility is essentially virgin territory in biomaterials science. For example, most experiments with the well-known Chandler loop model, for evaluation of blood-biomaterial interactions under flow, have been described for a maximum duration of 2 hours only. This study reports a systematic evaluation of two commercial CPB tubings, each with a hemocompatible coating, and one uncoated control. The experiments comprised (i) testing over 5 hours under flow, with human whole blood from 4 different donors; (ii) measurement of essential blood parameters of hemocompatibility; (iii) analysis of the luminal surfaces by scanning electron microscopy and thrombin generation time measurements. The dataset indicated differences in hemocompatibility of the tubings. Furthermore, it appeared that discrimination between biomaterial coatings can be made only after several hours of blood-biomaterial contact. Platelet counting, myeloperoxidase quantification, and scanning electron microscopy proved to be the most useful methods. These findings are believed to be relevant with respect to the bioengineering of extracorporeal devices that should function in contact with blood for extended time.
ISSN:1110-7243
1110-7251
DOI:10.1155/2007/29464