Loading…
Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb
Hematopoiesis initiates within the yolk sac of mammalian embryos in overlapping primitive and definitive waves, each containing erythroid and megakaryocyte progenitors. c-myb–null mouse fetuses lack definitive erythrocytes but contain primitive erythroblasts and hepatic megakaryocytes. However, it i...
Saved in:
Published in: | Blood 2008-03, Vol.111 (5), p.2636-2639 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hematopoiesis initiates within the yolk sac of mammalian embryos in overlapping primitive and definitive waves, each containing erythroid and megakaryocyte progenitors. c-myb–null mouse fetuses lack definitive erythrocytes but contain primitive erythroblasts and hepatic megakaryocytes. However, it is unclear if c-myb–null embryos harbor definitive erythroid or any megakaryocyte progenitors. We determined that c-myb was not expressed in primitive erythroid precursors and that c-myb–null embryos had normal primitive erythroid and megakaryocyte progenitor numbers and kinetics between embryonic day (E) 7.0 and E9.0. While primitive hematopoiesis is c-myb–independent, no definitive erythroid potential was detected in c-myb–null embryos, confirming that definitive erythropoiesis, beginning at E8.25 in the yolk sac, is completely c-myb–dependent. In contrast, reduced numbers of megakaryocyte progenitors with restricted proliferative capacity persist in E10.5 yolk sac and E11.5 liver. Despite this impaired megakaryocyte potential, c-myb–null fetuses had normal platelet numbers at E12.5 but became thrombocytopenic by E15.5, suggesting that c-myb is required for sustained thrombopoiesis. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2007-11-124685 |