Loading…
Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils
Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on...
Saved in:
Published in: | Biophysical journal 2008-03, Vol.94 (6), p.2204-2211 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233 |
---|---|
cites | cdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233 |
container_end_page | 2211 |
container_issue | 6 |
container_start_page | 2204 |
container_title | Biophysical journal |
container_volume | 94 |
creator | Yang, Lanti van der Werf, Kees O. Fitié, Carel F.C. Bennink, Martin L. Dijkstra, Pieter J. Feijen, Jan |
description | Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0
GPa to 3.9
GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33
±
2
MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17
GPa and 2.9
±
0.3
MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74
±
7
MPa at ambient conditions and to 3.4
±
0.2
MPa in phosphate-buffered saline. |
doi_str_mv | 10.1529/biophysj.107.111013 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2257912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508705666</els_id><sourcerecordid>70346180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi3Eii2FX4CELA7LKWXGjp3kANKqYtmVlo_DcrYcZ7J1SeNgp5X670nV8rWHPVkaP_POzPsy9gphgUpU72ofhtU-rRcIxQIRAeUTNkOViwyg1E_ZDAB0JvNKnbPnKa0BUCjAZ-wcS5BCKT1j15_JrWzvne34txgGiqOnxEPLv9jR74jbvuHLGFLKOt__oIbf7QfiN3wZus7eU8-vfB19l16ws9Z2iV6e3jn7fvXxbnmd3X79dLO8vM2cKsWYiZqKXNWIui6tAEKopWtzKYoCRaNabLRT1Koyt66USgldO-mEJarqqhVSztmHo-6wrTfUOOrHaDszRL-xcW-C9eb_n96vzH3YGSFUUaGYBN6eBGL4uaU0mo1PjqZregrbZEqd56hBw0RePEoWIHN9sHLO3jwA12Eb-8kGI1DpChQcIHmE3MHNSO2fnRHMIVDzO9CpUJhjoFPX63_P_dtzSnAC3h8BmkzfeYomOU-9o8ZHcqNpgn90wC8V9LLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215690500</pqid></control><display><type>article</type><title>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</title><source>PubMed (Medline)</source><creator>Yang, Lanti ; van der Werf, Kees O. ; Fitié, Carel F.C. ; Bennink, Martin L. ; Dijkstra, Pieter J. ; Feijen, Jan</creator><creatorcontrib>Yang, Lanti ; van der Werf, Kees O. ; Fitié, Carel F.C. ; Bennink, Martin L. ; Dijkstra, Pieter J. ; Feijen, Jan</creatorcontrib><description>Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0
GPa to 3.9
GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33
±
2
MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17
GPa and 2.9
±
0.3
MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74
±
7
MPa at ambient conditions and to 3.4
±
0.2
MPa in phosphate-buffered saline.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.111013</identifier><identifier>PMID: 18032556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anisotropy ; Bending ; Bending modulus ; Biochemistry ; Biophysics - methods ; Cattle ; Collagen - chemistry ; Collagen Type I - chemistry ; Collagens ; Cross-Linking Reagents - chemistry ; Crosslinking ; Equipment Design ; Extracellular Matrix - metabolism ; Fibers ; Fibrillar Collagens - chemistry ; Mathematical models ; Mechanical properties ; Microscopy ; Microscopy, Atomic Force ; Models, Statistical ; Pressure ; Proteins ; Saline ; Shear modulus ; Stress, Mechanical ; Temperature</subject><ispartof>Biophysical journal, 2008-03, Vol.94 (6), p.2204-2211</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 15, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</citedby><cites>FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2257912/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2257912/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18032556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lanti</creatorcontrib><creatorcontrib>van der Werf, Kees O.</creatorcontrib><creatorcontrib>Fitié, Carel F.C.</creatorcontrib><creatorcontrib>Bennink, Martin L.</creatorcontrib><creatorcontrib>Dijkstra, Pieter J.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><title>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0
GPa to 3.9
GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33
±
2
MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17
GPa and 2.9
±
0.3
MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74
±
7
MPa at ambient conditions and to 3.4
±
0.2
MPa in phosphate-buffered saline.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Bending</subject><subject>Bending modulus</subject><subject>Biochemistry</subject><subject>Biophysics - methods</subject><subject>Cattle</subject><subject>Collagen - chemistry</subject><subject>Collagen Type I - chemistry</subject><subject>Collagens</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Equipment Design</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibers</subject><subject>Fibrillar Collagens - chemistry</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Statistical</subject><subject>Pressure</subject><subject>Proteins</subject><subject>Saline</subject><subject>Shear modulus</subject><subject>Stress, Mechanical</subject><subject>Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi3Eii2FX4CELA7LKWXGjp3kANKqYtmVlo_DcrYcZ7J1SeNgp5X670nV8rWHPVkaP_POzPsy9gphgUpU72ofhtU-rRcIxQIRAeUTNkOViwyg1E_ZDAB0JvNKnbPnKa0BUCjAZ-wcS5BCKT1j15_JrWzvne34txgGiqOnxEPLv9jR74jbvuHLGFLKOt__oIbf7QfiN3wZus7eU8-vfB19l16ws9Z2iV6e3jn7fvXxbnmd3X79dLO8vM2cKsWYiZqKXNWIui6tAEKopWtzKYoCRaNabLRT1Koyt66USgldO-mEJarqqhVSztmHo-6wrTfUOOrHaDszRL-xcW-C9eb_n96vzH3YGSFUUaGYBN6eBGL4uaU0mo1PjqZregrbZEqd56hBw0RePEoWIHN9sHLO3jwA12Eb-8kGI1DpChQcIHmE3MHNSO2fnRHMIVDzO9CpUJhjoFPX63_P_dtzSnAC3h8BmkzfeYomOU-9o8ZHcqNpgn90wC8V9LLk</recordid><startdate>20080315</startdate><enddate>20080315</enddate><creator>Yang, Lanti</creator><creator>van der Werf, Kees O.</creator><creator>Fitié, Carel F.C.</creator><creator>Bennink, Martin L.</creator><creator>Dijkstra, Pieter J.</creator><creator>Feijen, Jan</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080315</creationdate><title>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</title><author>Yang, Lanti ; van der Werf, Kees O. ; Fitié, Carel F.C. ; Bennink, Martin L. ; Dijkstra, Pieter J. ; Feijen, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Bending</topic><topic>Bending modulus</topic><topic>Biochemistry</topic><topic>Biophysics - methods</topic><topic>Cattle</topic><topic>Collagen - chemistry</topic><topic>Collagen Type I - chemistry</topic><topic>Collagens</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Equipment Design</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibers</topic><topic>Fibrillar Collagens - chemistry</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Statistical</topic><topic>Pressure</topic><topic>Proteins</topic><topic>Saline</topic><topic>Shear modulus</topic><topic>Stress, Mechanical</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lanti</creatorcontrib><creatorcontrib>van der Werf, Kees O.</creatorcontrib><creatorcontrib>Fitié, Carel F.C.</creatorcontrib><creatorcontrib>Bennink, Martin L.</creatorcontrib><creatorcontrib>Dijkstra, Pieter J.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lanti</au><au>van der Werf, Kees O.</au><au>Fitié, Carel F.C.</au><au>Bennink, Martin L.</au><au>Dijkstra, Pieter J.</au><au>Feijen, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-03-15</date><risdate>2008</risdate><volume>94</volume><issue>6</issue><spage>2204</spage><epage>2211</epage><pages>2204-2211</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0
GPa to 3.9
GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33
±
2
MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17
GPa and 2.9
±
0.3
MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74
±
7
MPa at ambient conditions and to 3.4
±
0.2
MPa in phosphate-buffered saline.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18032556</pmid><doi>10.1529/biophysj.107.111013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2008-03, Vol.94 (6), p.2204-2211 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2257912 |
source | PubMed (Medline) |
subjects | Animals Anisotropy Bending Bending modulus Biochemistry Biophysics - methods Cattle Collagen - chemistry Collagen Type I - chemistry Collagens Cross-Linking Reagents - chemistry Crosslinking Equipment Design Extracellular Matrix - metabolism Fibers Fibrillar Collagens - chemistry Mathematical models Mechanical properties Microscopy Microscopy, Atomic Force Models, Statistical Pressure Proteins Saline Shear modulus Stress, Mechanical Temperature |
title | Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20Native%20and%20Cross-linked%20Type%20I%20Collagen%20Fibrils&rft.jtitle=Biophysical%20journal&rft.au=Yang,%20Lanti&rft.date=2008-03-15&rft.volume=94&rft.issue=6&rft.spage=2204&rft.epage=2211&rft.pages=2204-2211&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.111013&rft_dat=%3Cproquest_pubme%3E70346180%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215690500&rft_id=info:pmid/18032556&rfr_iscdi=true |