Loading…

Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils

Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2008-03, Vol.94 (6), p.2204-2211
Main Authors: Yang, Lanti, van der Werf, Kees O., Fitié, Carel F.C., Bennink, Martin L., Dijkstra, Pieter J., Feijen, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233
cites cdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233
container_end_page 2211
container_issue 6
container_start_page 2204
container_title Biophysical journal
container_volume 94
creator Yang, Lanti
van der Werf, Kees O.
Fitié, Carel F.C.
Bennink, Martin L.
Dijkstra, Pieter J.
Feijen, Jan
description Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.
doi_str_mv 10.1529/biophysj.107.111013
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2257912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349508705666</els_id><sourcerecordid>70346180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</originalsourceid><addsrcrecordid>eNp9kU2P0zAQhi3Eii2FX4CELA7LKWXGjp3kANKqYtmVlo_DcrYcZ7J1SeNgp5X670nV8rWHPVkaP_POzPsy9gphgUpU72ofhtU-rRcIxQIRAeUTNkOViwyg1E_ZDAB0JvNKnbPnKa0BUCjAZ-wcS5BCKT1j15_JrWzvne34txgGiqOnxEPLv9jR74jbvuHLGFLKOt__oIbf7QfiN3wZus7eU8-vfB19l16ws9Z2iV6e3jn7fvXxbnmd3X79dLO8vM2cKsWYiZqKXNWIui6tAEKopWtzKYoCRaNabLRT1Koyt66USgldO-mEJarqqhVSztmHo-6wrTfUOOrHaDszRL-xcW-C9eb_n96vzH3YGSFUUaGYBN6eBGL4uaU0mo1PjqZregrbZEqd56hBw0RePEoWIHN9sHLO3jwA12Eb-8kGI1DpChQcIHmE3MHNSO2fnRHMIVDzO9CpUJhjoFPX63_P_dtzSnAC3h8BmkzfeYomOU-9o8ZHcqNpgn90wC8V9LLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215690500</pqid></control><display><type>article</type><title>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</title><source>PubMed (Medline)</source><creator>Yang, Lanti ; van der Werf, Kees O. ; Fitié, Carel F.C. ; Bennink, Martin L. ; Dijkstra, Pieter J. ; Feijen, Jan</creator><creatorcontrib>Yang, Lanti ; van der Werf, Kees O. ; Fitié, Carel F.C. ; Bennink, Martin L. ; Dijkstra, Pieter J. ; Feijen, Jan</creatorcontrib><description>Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.107.111013</identifier><identifier>PMID: 18032556</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Anisotropy ; Bending ; Bending modulus ; Biochemistry ; Biophysics - methods ; Cattle ; Collagen - chemistry ; Collagen Type I - chemistry ; Collagens ; Cross-Linking Reagents - chemistry ; Crosslinking ; Equipment Design ; Extracellular Matrix - metabolism ; Fibers ; Fibrillar Collagens - chemistry ; Mathematical models ; Mechanical properties ; Microscopy ; Microscopy, Atomic Force ; Models, Statistical ; Pressure ; Proteins ; Saline ; Shear modulus ; Stress, Mechanical ; Temperature</subject><ispartof>Biophysical journal, 2008-03, Vol.94 (6), p.2204-2211</ispartof><rights>2008 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 15, 2008</rights><rights>Copyright © 2008, Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</citedby><cites>FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2257912/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2257912/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18032556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Lanti</creatorcontrib><creatorcontrib>van der Werf, Kees O.</creatorcontrib><creatorcontrib>Fitié, Carel F.C.</creatorcontrib><creatorcontrib>Bennink, Martin L.</creatorcontrib><creatorcontrib>Dijkstra, Pieter J.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><title>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Bending</subject><subject>Bending modulus</subject><subject>Biochemistry</subject><subject>Biophysics - methods</subject><subject>Cattle</subject><subject>Collagen - chemistry</subject><subject>Collagen Type I - chemistry</subject><subject>Collagens</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Crosslinking</subject><subject>Equipment Design</subject><subject>Extracellular Matrix - metabolism</subject><subject>Fibers</subject><subject>Fibrillar Collagens - chemistry</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Statistical</subject><subject>Pressure</subject><subject>Proteins</subject><subject>Saline</subject><subject>Shear modulus</subject><subject>Stress, Mechanical</subject><subject>Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kU2P0zAQhi3Eii2FX4CELA7LKWXGjp3kANKqYtmVlo_DcrYcZ7J1SeNgp5X670nV8rWHPVkaP_POzPsy9gphgUpU72ofhtU-rRcIxQIRAeUTNkOViwyg1E_ZDAB0JvNKnbPnKa0BUCjAZ-wcS5BCKT1j15_JrWzvne34txgGiqOnxEPLv9jR74jbvuHLGFLKOt__oIbf7QfiN3wZus7eU8-vfB19l16ws9Z2iV6e3jn7fvXxbnmd3X79dLO8vM2cKsWYiZqKXNWIui6tAEKopWtzKYoCRaNabLRT1Koyt66USgldO-mEJarqqhVSztmHo-6wrTfUOOrHaDszRL-xcW-C9eb_n96vzH3YGSFUUaGYBN6eBGL4uaU0mo1PjqZregrbZEqd56hBw0RePEoWIHN9sHLO3jwA12Eb-8kGI1DpChQcIHmE3MHNSO2fnRHMIVDzO9CpUJhjoFPX63_P_dtzSnAC3h8BmkzfeYomOU-9o8ZHcqNpgn90wC8V9LLk</recordid><startdate>20080315</startdate><enddate>20080315</enddate><creator>Yang, Lanti</creator><creator>van der Werf, Kees O.</creator><creator>Fitié, Carel F.C.</creator><creator>Bennink, Martin L.</creator><creator>Dijkstra, Pieter J.</creator><creator>Feijen, Jan</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20080315</creationdate><title>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</title><author>Yang, Lanti ; van der Werf, Kees O. ; Fitié, Carel F.C. ; Bennink, Martin L. ; Dijkstra, Pieter J. ; Feijen, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Bending</topic><topic>Bending modulus</topic><topic>Biochemistry</topic><topic>Biophysics - methods</topic><topic>Cattle</topic><topic>Collagen - chemistry</topic><topic>Collagen Type I - chemistry</topic><topic>Collagens</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Crosslinking</topic><topic>Equipment Design</topic><topic>Extracellular Matrix - metabolism</topic><topic>Fibers</topic><topic>Fibrillar Collagens - chemistry</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Statistical</topic><topic>Pressure</topic><topic>Proteins</topic><topic>Saline</topic><topic>Shear modulus</topic><topic>Stress, Mechanical</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lanti</creatorcontrib><creatorcontrib>van der Werf, Kees O.</creatorcontrib><creatorcontrib>Fitié, Carel F.C.</creatorcontrib><creatorcontrib>Bennink, Martin L.</creatorcontrib><creatorcontrib>Dijkstra, Pieter J.</creatorcontrib><creatorcontrib>Feijen, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lanti</au><au>van der Werf, Kees O.</au><au>Fitié, Carel F.C.</au><au>Bennink, Martin L.</au><au>Dijkstra, Pieter J.</au><au>Feijen, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2008-03-15</date><risdate>2008</risdate><volume>94</volume><issue>6</issue><spage>2204</spage><epage>2211</epage><pages>2204-2211</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 ± 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07–0.17 GPa and 2.9 ± 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 ± 7 MPa at ambient conditions and to 3.4 ± 0.2 MPa in phosphate-buffered saline.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18032556</pmid><doi>10.1529/biophysj.107.111013</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2008-03, Vol.94 (6), p.2204-2211
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2257912
source PubMed (Medline)
subjects Animals
Anisotropy
Bending
Bending modulus
Biochemistry
Biophysics - methods
Cattle
Collagen - chemistry
Collagen Type I - chemistry
Collagens
Cross-Linking Reagents - chemistry
Crosslinking
Equipment Design
Extracellular Matrix - metabolism
Fibers
Fibrillar Collagens - chemistry
Mathematical models
Mechanical properties
Microscopy
Microscopy, Atomic Force
Models, Statistical
Pressure
Proteins
Saline
Shear modulus
Stress, Mechanical
Temperature
title Mechanical Properties of Native and Cross-linked Type I Collagen Fibrils
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20Native%20and%20Cross-linked%20Type%20I%20Collagen%20Fibrils&rft.jtitle=Biophysical%20journal&rft.au=Yang,%20Lanti&rft.date=2008-03-15&rft.volume=94&rft.issue=6&rft.spage=2204&rft.epage=2211&rft.pages=2204-2211&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.107.111013&rft_dat=%3Cproquest_pubme%3E70346180%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c582t-2be745b116b8a20e10b3cf4327712d5f1d6c5ef584ac835526bc3c2aee9b9f233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215690500&rft_id=info:pmid/18032556&rfr_iscdi=true