Loading…
Functional interdependence of neurons in a single canine intrinsic cardiac ganglionated plexus
To determine the activity characteristics displayed by different subpopulations of neurons in a single intrinsic cardiac ganglionated plexus, the behaviour and co-ordination of activity generated by neurons in two loci of the right atrial ganglionated plexus (RAGP) were evaluated in 16 anaesthetized...
Saved in:
Published in: | The Journal of physiology 2000-11, Vol.528 (3), p.561-571 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To determine the activity characteristics displayed by different subpopulations of neurons in a single intrinsic cardiac ganglionated
plexus, the behaviour and co-ordination of activity generated by neurons in two loci of the right atrial ganglionated plexus
(RAGP) were evaluated in 16 anaesthetized dogs during basal states as well as in response to increasing inputs from ventricular
sensory neurites.
These sub-populations of right atrial neurons received afferent inputs from sensory neurites in both ventricles that were
responsive to local mechanical stimuli and the nitric oxide donor nitroprusside. Neurons in at least one RAGP locus were activated
by epicardial application of veratridine, bradykinin, the β 1 -adrenoceptor agonist prenaterol or glutamate. Epicardial application of angiotensin II, the selective β 2 -adrenoceptor agonist terbutaline and selective α-adrenoceptor agonists elicited inconsistent neuronal responses.
The activity generated by both populations of atrial neurons studied over 5 min periods during basal states displayed periodic
coupled behaviour (cross-correlation coefficients of activities that reached, on average, 0·88 ± 0·03; range 0·71â1) for 15â30
s periods of time. These periods of coupled activity occurred every 30â50 s during basal states, as well as when neuronal
activity was enhanced by chemical activation of their ventricular sensory inputs.
These results indicate that neurons throughout one intrinsic cardiac ganglionated plexus receive inputs from mechano- and
chemosensory neurites located in both ventricles. That such neurons respond to multiple chemical stimuli, including those
liberated from adjacent adrenergic efferent nerve terminals, indicates the complexity of the integrative processing of information
that occurs within the intrinsic cardiac nervous system.
It is proposed that the interdependent activity displayed by populations of neurons in different regions of one intrinsic
cardiac ganglionated plexus, responding as they do to multiple cardiac sensory inputs, forms the basis for integrated regional
cardiac control. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1111/j.1469-7793.2000.00561.x |