Loading…

Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy

In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2008-03, Vol.36 (4), p.e23-e23
Main Authors: Kiyohara, Yota B, Nishii, Keigo, Ukai-Tadenuma, Maki, Ueda, Hiroki R, Uchiyama, Yasuo, Yagita, Kazuhiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183
cites cdi_FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183
container_end_page e23
container_issue 4
container_start_page e23
container_title Nucleic acids research
container_volume 36
creator Kiyohara, Yota B
Nishii, Keigo
Ukai-Tadenuma, Maki
Ueda, Hiroki R
Uchiyama, Yasuo
Yagita, Kazuhiro
description In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock genes in mammals, expression of the Dbp mRNA robustly oscillates both in vivo and in culture cells. Here, we present circadian enhancer detection strategy using prokaryotic transposon system. The mDbp promoter drives reporter gene expression in robust circadian cycles in rat-1 fibroblasts. To identify the circadian enhancer generating this robust rhythm, we developed a prokaryotic transposon-based enhancer detecting vector for in vitro transposition. Using this system, we identified a strong circadian enhancer region containing the CATGTG sequence in the 5' flanking region of the mDbp gene; this enhancer region is critical for the ability of the mDbp promoter to drive robust oscillation in living cells. This enhancer is classified as a CANNTG type non-canonical E-box. These findings strongly suggest that CANNTG-type non-canonical E-boxes may contribute, at least in part, to the regulation of robust circadian gene expression. Furthermore, these data may help explain the wider effects of the CLOCK/BMAL1 complex in control of clock output genes.
doi_str_mv 10.1093/nar/gkn018
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2275109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkn018</oup_id><sourcerecordid>20562523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183</originalsourceid><addsrcrecordid>eNqF0s-LEzEUB_BBFLdWL_4BOgh6EMZ9SSY_5iLI1rXCggdXFC_hTSZts22TMZlZ3P_elCnrj4N7Csn78E3yeEXxlMAbAg079RhP11sPRN0rZoQJWtWNoPeLGTDgFYFanRSPUroCIDXh9cPihCjKqRRqVriFHawZXPBlWJVYGhcNdg59af0GvbGxdL4cNrbcL9q-7GPYhyEfjsn59WG7xXgTBmfKIaJPfUg56Tonhli1mGxXplwY7PrmcfFghbtknxzXeXF5_v7ybFldfPrw8ezdRWUEZUOlGssNpUyojkoqGSAgb1vDOQfg1tSy6YjlNWdcdVxxNIAt1kiRABLF5sXbKbYf273tjPX5_p3uo9vnl-qATv9d8W6j1-FaUyr5oZ3z4tUxIIYfo02D3rtk7G6H3oYxaQmsBirUnZACF7nN7E5IGiGJJDzDF__AqzBGn7uVw0ASxonM6PWETAwpRbu6_RsBffiAzvOgp3nI-Nmf3fhNjwOQwcsJhLH_f1A1OZcG-_NWYtxqIZnkevntu26WbCG_1kKfZ_988isMGtfRJf3lMwXCAJTgign2C-r1140</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200713517</pqid></control><display><type>article</type><title>Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy</title><source>Oxford Open</source><source>PubMed Central</source><creator>Kiyohara, Yota B ; Nishii, Keigo ; Ukai-Tadenuma, Maki ; Ueda, Hiroki R ; Uchiyama, Yasuo ; Yagita, Kazuhiro</creator><creatorcontrib>Kiyohara, Yota B ; Nishii, Keigo ; Ukai-Tadenuma, Maki ; Ueda, Hiroki R ; Uchiyama, Yasuo ; Yagita, Kazuhiro</creatorcontrib><description>In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock genes in mammals, expression of the Dbp mRNA robustly oscillates both in vivo and in culture cells. Here, we present circadian enhancer detection strategy using prokaryotic transposon system. The mDbp promoter drives reporter gene expression in robust circadian cycles in rat-1 fibroblasts. To identify the circadian enhancer generating this robust rhythm, we developed a prokaryotic transposon-based enhancer detecting vector for in vitro transposition. Using this system, we identified a strong circadian enhancer region containing the CATGTG sequence in the 5' flanking region of the mDbp gene; this enhancer region is critical for the ability of the mDbp promoter to drive robust oscillation in living cells. This enhancer is classified as a CANNTG type non-canonical E-box. These findings strongly suggest that CANNTG-type non-canonical E-boxes may contribute, at least in part, to the regulation of robust circadian gene expression. Furthermore, these data may help explain the wider effects of the CLOCK/BMAL1 complex in control of clock output genes.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkn018</identifier><identifier>PMID: 18252768</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; ARNTL Transcription Factors ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Cells, Cultured ; Circadian Rhythm - genetics ; CLOCK Proteins ; DNA Transposable Elements ; DNA-Binding Proteins - genetics ; E-Box Elements ; Gene Expression Regulation ; Genes, Reporter ; Genetic Vectors ; Luciferases - analysis ; Luciferases - genetics ; Methods Online ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Promoter Regions, Genetic ; Rats ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcriptional Activation</subject><ispartof>Nucleic acids research, 2008-03, Vol.36 (4), p.e23-e23</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183</citedby><cites>FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275109/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275109/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18252768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kiyohara, Yota B</creatorcontrib><creatorcontrib>Nishii, Keigo</creatorcontrib><creatorcontrib>Ukai-Tadenuma, Maki</creatorcontrib><creatorcontrib>Ueda, Hiroki R</creatorcontrib><creatorcontrib>Uchiyama, Yasuo</creatorcontrib><creatorcontrib>Yagita, Kazuhiro</creatorcontrib><title>Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock genes in mammals, expression of the Dbp mRNA robustly oscillates both in vivo and in culture cells. Here, we present circadian enhancer detection strategy using prokaryotic transposon system. The mDbp promoter drives reporter gene expression in robust circadian cycles in rat-1 fibroblasts. To identify the circadian enhancer generating this robust rhythm, we developed a prokaryotic transposon-based enhancer detecting vector for in vitro transposition. Using this system, we identified a strong circadian enhancer region containing the CATGTG sequence in the 5' flanking region of the mDbp gene; this enhancer region is critical for the ability of the mDbp promoter to drive robust oscillation in living cells. This enhancer is classified as a CANNTG type non-canonical E-box. These findings strongly suggest that CANNTG-type non-canonical E-boxes may contribute, at least in part, to the regulation of robust circadian gene expression. Furthermore, these data may help explain the wider effects of the CLOCK/BMAL1 complex in control of clock output genes.</description><subject>Animals</subject><subject>ARNTL Transcription Factors</subject><subject>Base Sequence</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Cells, Cultured</subject><subject>Circadian Rhythm - genetics</subject><subject>CLOCK Proteins</subject><subject>DNA Transposable Elements</subject><subject>DNA-Binding Proteins - genetics</subject><subject>E-Box Elements</subject><subject>Gene Expression Regulation</subject><subject>Genes, Reporter</subject><subject>Genetic Vectors</subject><subject>Luciferases - analysis</subject><subject>Luciferases - genetics</subject><subject>Methods Online</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>NIH 3T3 Cells</subject><subject>Promoter Regions, Genetic</subject><subject>Rats</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcriptional Activation</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqF0s-LEzEUB_BBFLdWL_4BOgh6EMZ9SSY_5iLI1rXCggdXFC_hTSZts22TMZlZ3P_elCnrj4N7Csn78E3yeEXxlMAbAg079RhP11sPRN0rZoQJWtWNoPeLGTDgFYFanRSPUroCIDXh9cPihCjKqRRqVriFHawZXPBlWJVYGhcNdg59af0GvbGxdL4cNrbcL9q-7GPYhyEfjsn59WG7xXgTBmfKIaJPfUg56Tonhli1mGxXplwY7PrmcfFghbtknxzXeXF5_v7ybFldfPrw8ezdRWUEZUOlGssNpUyojkoqGSAgb1vDOQfg1tSy6YjlNWdcdVxxNIAt1kiRABLF5sXbKbYf273tjPX5_p3uo9vnl-qATv9d8W6j1-FaUyr5oZ3z4tUxIIYfo02D3rtk7G6H3oYxaQmsBirUnZACF7nN7E5IGiGJJDzDF__AqzBGn7uVw0ASxonM6PWETAwpRbu6_RsBffiAzvOgp3nI-Nmf3fhNjwOQwcsJhLH_f1A1OZcG-_NWYtxqIZnkevntu26WbCG_1kKfZ_988isMGtfRJf3lMwXCAJTgign2C-r1140</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Kiyohara, Yota B</creator><creator>Nishii, Keigo</creator><creator>Ukai-Tadenuma, Maki</creator><creator>Ueda, Hiroki R</creator><creator>Uchiyama, Yasuo</creator><creator>Yagita, Kazuhiro</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080301</creationdate><title>Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy</title><author>Kiyohara, Yota B ; Nishii, Keigo ; Ukai-Tadenuma, Maki ; Ueda, Hiroki R ; Uchiyama, Yasuo ; Yagita, Kazuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>ARNTL Transcription Factors</topic><topic>Base Sequence</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Cells, Cultured</topic><topic>Circadian Rhythm - genetics</topic><topic>CLOCK Proteins</topic><topic>DNA Transposable Elements</topic><topic>DNA-Binding Proteins - genetics</topic><topic>E-Box Elements</topic><topic>Gene Expression Regulation</topic><topic>Genes, Reporter</topic><topic>Genetic Vectors</topic><topic>Luciferases - analysis</topic><topic>Luciferases - genetics</topic><topic>Methods Online</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>NIH 3T3 Cells</topic><topic>Promoter Regions, Genetic</topic><topic>Rats</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcriptional Activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kiyohara, Yota B</creatorcontrib><creatorcontrib>Nishii, Keigo</creatorcontrib><creatorcontrib>Ukai-Tadenuma, Maki</creatorcontrib><creatorcontrib>Ueda, Hiroki R</creatorcontrib><creatorcontrib>Uchiyama, Yasuo</creatorcontrib><creatorcontrib>Yagita, Kazuhiro</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kiyohara, Yota B</au><au>Nishii, Keigo</au><au>Ukai-Tadenuma, Maki</au><au>Ueda, Hiroki R</au><au>Uchiyama, Yasuo</au><au>Yagita, Kazuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>36</volume><issue>4</issue><spage>e23</spage><epage>e23</epage><pages>e23-e23</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>In mammals, the expression of 5-10% of genes occurs with circadian fluctuation in various organs and tissues. This cyclic transcription is thought to be directly or indirectly regulated through circadian transcriptional/translational feedback loops consisting of a set of clock genes. Among the clock genes in mammals, expression of the Dbp mRNA robustly oscillates both in vivo and in culture cells. Here, we present circadian enhancer detection strategy using prokaryotic transposon system. The mDbp promoter drives reporter gene expression in robust circadian cycles in rat-1 fibroblasts. To identify the circadian enhancer generating this robust rhythm, we developed a prokaryotic transposon-based enhancer detecting vector for in vitro transposition. Using this system, we identified a strong circadian enhancer region containing the CATGTG sequence in the 5' flanking region of the mDbp gene; this enhancer region is critical for the ability of the mDbp promoter to drive robust oscillation in living cells. This enhancer is classified as a CANNTG type non-canonical E-box. These findings strongly suggest that CANNTG-type non-canonical E-boxes may contribute, at least in part, to the regulation of robust circadian gene expression. Furthermore, these data may help explain the wider effects of the CLOCK/BMAL1 complex in control of clock output genes.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18252768</pmid><doi>10.1093/nar/gkn018</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2008-03, Vol.36 (4), p.e23-e23
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2275109
source Oxford Open; PubMed Central
subjects Animals
ARNTL Transcription Factors
Base Sequence
Basic Helix-Loop-Helix Transcription Factors - metabolism
Cells, Cultured
Circadian Rhythm - genetics
CLOCK Proteins
DNA Transposable Elements
DNA-Binding Proteins - genetics
E-Box Elements
Gene Expression Regulation
Genes, Reporter
Genetic Vectors
Luciferases - analysis
Luciferases - genetics
Methods Online
Mice
Molecular Sequence Data
NIH 3T3 Cells
Promoter Regions, Genetic
Rats
Trans-Activators - metabolism
Transcription Factors - genetics
Transcriptional Activation
title Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20a%20circadian%20enhancer%20in%20the%20mDbp%20promoter%20using%20prokaryotic%20transposon%20vector-based%20strategy&rft.jtitle=Nucleic%20acids%20research&rft.au=Kiyohara,%20Yota%20B&rft.date=2008-03-01&rft.volume=36&rft.issue=4&rft.spage=e23&rft.epage=e23&rft.pages=e23-e23&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkn018&rft_dat=%3Cproquest_pubme%3E20562523%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c623t-89e5c22368d272730a0a5bbc555005ec479d1e545358d585ac0aba4a2a10a183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200713517&rft_id=info:pmid/18252768&rft_oup_id=10.1093/nar/gkn018&rfr_iscdi=true