Loading…

Muscle vibration sustains motor unit firing rate during submaximal isometric fatigue in humans

In keeping with the ‘muscular wisdom hypothesis’, many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates musc...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2001-09, Vol.535 (3), p.929-936
Main Authors: Griffin, L., Garland, S. J., Ivanova, T., Gossen, E. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In keeping with the ‘muscular wisdom hypothesis’, many studies have documented that the firing rate of the majority of motor units decreased during fatiguing isometric contractions. The present study investigated whether the application of periodic muscle vibration, which strongly activates muscle spindles, would alter the modulation of motor unit firing rate during submaximal fatiguing isometric contractions. Thirty-three motor units from the lateral head of the triceps brachii muscle were recorded from 10 subjects during a sustained isometric 20 % maximal voluntary contraction (MVC) of the elbow extensors. Vibration was interposed on the contraction for 2 s every 10 s. Twenty-two motor units were recorded from the beginning of the fatigue task. The discharge rate of the majority of motor units remained constant (12/22) or increased (4/22) with fatigue. Six motor units demonstrated a reduction in discharge rate that later returned toward initial values; these motor units had higher initial discharge rates than the other 16 motor units. In a second series of experiments, four subjects held a sustained isometric 20 % MVC for 2 min and then vibration was applied as above for the remainder of the contraction. In this case, motor units initially demonstrated a decrease in firing rate that increased after the vibration was applied. Thus muscle spindle disfacilitation of the motoneurone pool may be associated with the decline of motor unit discharge rate observed during the first 2 min of the contraction. In a third set of experiments, seven subjects performed the main experiment on one occasion and repeated the fatigue task without vibration on a second occasion. Neither the endurance time of the fatiguing contraction nor the MVC torque following fatigue was affected by the application of vibration. This finding calls into question the applicability of the muscular wisdom hypothesis to submaximal contractions.
ISSN:0022-3751
1469-7793
DOI:10.1111/j.1469-7793.2001.00929.x