Loading…

Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels

Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monito...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2002-10, Vol.544 (2), p.429-445
Main Authors: Ainscow, Edward K., Mirshamsi, Shirin, Tang, Teresa, Ashford, Michael L. J., Rutter, Guy A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63
cites cdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63
container_end_page 445
container_issue 2
container_start_page 429
container_title The Journal of physiology
container_volume 544
creator Ainscow, Edward K.
Mirshamsi, Shirin
Tang, Teresa
Ashford, Michael L. J.
Rutter, Guy A.
description Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.
doi_str_mv 10.1113/jphysiol.2002.022434
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2290605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72179721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</originalsourceid><addsrcrecordid>eNqNkcuOFCEYhYnROO3oGxjDShemWqComwuTyXh3EmfRrglF_XQxoaGEqp7UE_maUlPtbecGQs453w8chJ5SsqWU5q9uhn6OxtstI4RtCWM85_fQhvKyyaqqye-jTRJYllcFPUOPYrwhhOakaR6iM8rymta03KAfb2cnD0Zhc5B74_bYa6wDAFbz6KO3SbnYXWPlnQI3Bjka73A3hcWqJ7A4govLoZ1xUnE_D37spb1jOpiCdxBfYziaDhICax8WYGZcBwOkxY0LfAzeLqMX6Y44miPgLy-x6qVzYONj9EBLG-HJaT9H396_211-zK6-fvh0eXGVqaKgTda1BePQcal0Q1lFy6LNqepKzignmrOiY1rzVrKqLinrQDc1rXRdEQ6VKtoyP0dvVu4wtQfo1kdbMYT0P2EWXhrxr-JML_b-KBhrSEmKBHh-AgT_fYI4ioOJCqyVDvwURcVo1aQlGflqVMHHGED_HkKJWBoWvxoWS8NibTjFnv19wT-hU6XJUK-GW2Nh_i-o2H2-5qxJ0RdrtDf7_tYEEKs5emVgnEXBuWBicf4Ed__Igg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72179721</pqid></control><display><type>article</type><title>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</title><source>NCBI_PubMed Central(免费)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ainscow, Edward K. ; Mirshamsi, Shirin ; Tang, Teresa ; Ashford, Michael L. J. ; Rutter, Guy A.</creator><creatorcontrib>Ainscow, Edward K. ; Mirshamsi, Shirin ; Tang, Teresa ; Ashford, Michael L. J. ; Rutter, Guy A.</creatorcontrib><description>Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2002.022434</identifier><identifier>PMID: 12381816</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - physiology ; Animals ; Cell Membrane - metabolism ; Cells, Cultured ; Cerebellum - cytology ; Cerebellum - metabolism ; Chemoreceptor Cells - physiology ; Cytosol - metabolism ; Electrophysiology ; Energy Metabolism ; Glucose - metabolism ; Hypothalamus - cytology ; Hypothalamus - physiology ; Lactates - metabolism ; Male ; Monocarboxylic Acid Transporters - metabolism ; NADP - metabolism ; Neuroglia - metabolism ; Neurons - physiology ; Original ; Osmolar Concentration ; Potassium Channels - metabolism ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar</subject><ispartof>The Journal of physiology, 2002-10, Vol.544 (2), p.429-445</ispartof><rights>2002 The Journal of Physiology © 2002 The Physiological Society</rights><rights>The Physiological Society 2002 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</citedby><cites>FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290605/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290605/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12381816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ainscow, Edward K.</creatorcontrib><creatorcontrib>Mirshamsi, Shirin</creatorcontrib><creatorcontrib>Tang, Teresa</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><creatorcontrib>Rutter, Guy A.</creatorcontrib><title>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - physiology</subject><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Chemoreceptor Cells - physiology</subject><subject>Cytosol - metabolism</subject><subject>Electrophysiology</subject><subject>Energy Metabolism</subject><subject>Glucose - metabolism</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - physiology</subject><subject>Lactates - metabolism</subject><subject>Male</subject><subject>Monocarboxylic Acid Transporters - metabolism</subject><subject>NADP - metabolism</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - physiology</subject><subject>Original</subject><subject>Osmolar Concentration</subject><subject>Potassium Channels - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Wistar</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkcuOFCEYhYnROO3oGxjDShemWqComwuTyXh3EmfRrglF_XQxoaGEqp7UE_maUlPtbecGQs453w8chJ5SsqWU5q9uhn6OxtstI4RtCWM85_fQhvKyyaqqye-jTRJYllcFPUOPYrwhhOakaR6iM8rymta03KAfb2cnD0Zhc5B74_bYa6wDAFbz6KO3SbnYXWPlnQI3Bjka73A3hcWqJ7A4govLoZ1xUnE_D37spb1jOpiCdxBfYziaDhICax8WYGZcBwOkxY0LfAzeLqMX6Y44miPgLy-x6qVzYONj9EBLG-HJaT9H396_211-zK6-fvh0eXGVqaKgTda1BePQcal0Q1lFy6LNqepKzignmrOiY1rzVrKqLinrQDc1rXRdEQ6VKtoyP0dvVu4wtQfo1kdbMYT0P2EWXhrxr-JML_b-KBhrSEmKBHh-AgT_fYI4ioOJCqyVDvwURcVo1aQlGflqVMHHGED_HkKJWBoWvxoWS8NibTjFnv19wT-hU6XJUK-GW2Nh_i-o2H2-5qxJ0RdrtDf7_tYEEKs5emVgnEXBuWBicf4Ed__Igg</recordid><startdate>20021015</startdate><enddate>20021015</enddate><creator>Ainscow, Edward K.</creator><creator>Mirshamsi, Shirin</creator><creator>Tang, Teresa</creator><creator>Ashford, Michael L. J.</creator><creator>Rutter, Guy A.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021015</creationdate><title>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</title><author>Ainscow, Edward K. ; Mirshamsi, Shirin ; Tang, Teresa ; Ashford, Michael L. J. ; Rutter, Guy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - physiology</topic><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Chemoreceptor Cells - physiology</topic><topic>Cytosol - metabolism</topic><topic>Electrophysiology</topic><topic>Energy Metabolism</topic><topic>Glucose - metabolism</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - physiology</topic><topic>Lactates - metabolism</topic><topic>Male</topic><topic>Monocarboxylic Acid Transporters - metabolism</topic><topic>NADP - metabolism</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - physiology</topic><topic>Original</topic><topic>Osmolar Concentration</topic><topic>Potassium Channels - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainscow, Edward K.</creatorcontrib><creatorcontrib>Mirshamsi, Shirin</creatorcontrib><creatorcontrib>Tang, Teresa</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><creatorcontrib>Rutter, Guy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainscow, Edward K.</au><au>Mirshamsi, Shirin</au><au>Tang, Teresa</au><au>Ashford, Michael L. J.</au><au>Rutter, Guy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2002-10-15</date><risdate>2002</risdate><volume>544</volume><issue>2</issue><spage>429</spage><epage>445</epage><pages>429-445</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma membrane, monitored with a SNAP25–luciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>12381816</pmid><doi>10.1113/jphysiol.2002.022434</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 2002-10, Vol.544 (2), p.429-445
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2290605
source NCBI_PubMed Central(免费); Wiley-Blackwell Read & Publish Collection
subjects Adenosine Triphosphate - metabolism
Adenosine Triphosphate - physiology
Animals
Cell Membrane - metabolism
Cells, Cultured
Cerebellum - cytology
Cerebellum - metabolism
Chemoreceptor Cells - physiology
Cytosol - metabolism
Electrophysiology
Energy Metabolism
Glucose - metabolism
Hypothalamus - cytology
Hypothalamus - physiology
Lactates - metabolism
Male
Monocarboxylic Acid Transporters - metabolism
NADP - metabolism
Neuroglia - metabolism
Neurons - physiology
Original
Osmolar Concentration
Potassium Channels - metabolism
Rats
Rats, Sprague-Dawley
Rats, Wistar
title Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20imaging%20of%20free%20cytosolic%20ATP%20concentration%20during%20fuel%20sensing%20by%20rat%20hypothalamic%20neurones:%20evidence%20for%20ATP-independent%20control%20of%20ATP-sensitive%20K+%20channels&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Ainscow,%20Edward%20K.&rft.date=2002-10-15&rft.volume=544&rft.issue=2&rft.spage=429&rft.epage=445&rft.pages=429-445&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2002.022434&rft_dat=%3Cproquest_pubme%3E72179721%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72179721&rft_id=info:pmid/12381816&rfr_iscdi=true