Loading…
Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels
Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monito...
Saved in:
Published in: | The Journal of physiology 2002-10, Vol.544 (2), p.429-445 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63 |
---|---|
cites | cdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63 |
container_end_page | 445 |
container_issue | 2 |
container_start_page | 429 |
container_title | The Journal of physiology |
container_volume | 544 |
creator | Ainscow, Edward K. Mirshamsi, Shirin Tang, Teresa Ashford, Michael L. J. Rutter, Guy A. |
description | Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine
the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role
for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma
membrane, monitored with a SNAP25âluciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded
to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous
lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation
of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells. |
doi_str_mv | 10.1113/jphysiol.2002.022434 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2290605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72179721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</originalsourceid><addsrcrecordid>eNqNkcuOFCEYhYnROO3oGxjDShemWqComwuTyXh3EmfRrglF_XQxoaGEqp7UE_maUlPtbecGQs453w8chJ5SsqWU5q9uhn6OxtstI4RtCWM85_fQhvKyyaqqye-jTRJYllcFPUOPYrwhhOakaR6iM8rymta03KAfb2cnD0Zhc5B74_bYa6wDAFbz6KO3SbnYXWPlnQI3Bjka73A3hcWqJ7A4govLoZ1xUnE_D37spb1jOpiCdxBfYziaDhICax8WYGZcBwOkxY0LfAzeLqMX6Y44miPgLy-x6qVzYONj9EBLG-HJaT9H396_211-zK6-fvh0eXGVqaKgTda1BePQcal0Q1lFy6LNqepKzignmrOiY1rzVrKqLinrQDc1rXRdEQ6VKtoyP0dvVu4wtQfo1kdbMYT0P2EWXhrxr-JML_b-KBhrSEmKBHh-AgT_fYI4ioOJCqyVDvwURcVo1aQlGflqVMHHGED_HkKJWBoWvxoWS8NibTjFnv19wT-hU6XJUK-GW2Nh_i-o2H2-5qxJ0RdrtDf7_tYEEKs5emVgnEXBuWBicf4Ed__Igg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72179721</pqid></control><display><type>article</type><title>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</title><source>NCBI_PubMed Central(免费)</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ainscow, Edward K. ; Mirshamsi, Shirin ; Tang, Teresa ; Ashford, Michael L. J. ; Rutter, Guy A.</creator><creatorcontrib>Ainscow, Edward K. ; Mirshamsi, Shirin ; Tang, Teresa ; Ashford, Michael L. J. ; Rutter, Guy A.</creatorcontrib><description>Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine
the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role
for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma
membrane, monitored with a SNAP25âluciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded
to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous
lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation
of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.2002.022434</identifier><identifier>PMID: 12381816</identifier><language>eng</language><publisher>Oxford, UK: The Physiological Society</publisher><subject>Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - physiology ; Animals ; Cell Membrane - metabolism ; Cells, Cultured ; Cerebellum - cytology ; Cerebellum - metabolism ; Chemoreceptor Cells - physiology ; Cytosol - metabolism ; Electrophysiology ; Energy Metabolism ; Glucose - metabolism ; Hypothalamus - cytology ; Hypothalamus - physiology ; Lactates - metabolism ; Male ; Monocarboxylic Acid Transporters - metabolism ; NADP - metabolism ; Neuroglia - metabolism ; Neurons - physiology ; Original ; Osmolar Concentration ; Potassium Channels - metabolism ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar</subject><ispartof>The Journal of physiology, 2002-10, Vol.544 (2), p.429-445</ispartof><rights>2002 The Journal of Physiology © 2002 The Physiological Society</rights><rights>The Physiological Society 2002 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</citedby><cites>FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290605/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290605/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12381816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ainscow, Edward K.</creatorcontrib><creatorcontrib>Mirshamsi, Shirin</creatorcontrib><creatorcontrib>Tang, Teresa</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><creatorcontrib>Rutter, Guy A.</creatorcontrib><title>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine
the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role
for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma
membrane, monitored with a SNAP25âluciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded
to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous
lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation
of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - physiology</subject><subject>Animals</subject><subject>Cell Membrane - metabolism</subject><subject>Cells, Cultured</subject><subject>Cerebellum - cytology</subject><subject>Cerebellum - metabolism</subject><subject>Chemoreceptor Cells - physiology</subject><subject>Cytosol - metabolism</subject><subject>Electrophysiology</subject><subject>Energy Metabolism</subject><subject>Glucose - metabolism</subject><subject>Hypothalamus - cytology</subject><subject>Hypothalamus - physiology</subject><subject>Lactates - metabolism</subject><subject>Male</subject><subject>Monocarboxylic Acid Transporters - metabolism</subject><subject>NADP - metabolism</subject><subject>Neuroglia - metabolism</subject><subject>Neurons - physiology</subject><subject>Original</subject><subject>Osmolar Concentration</subject><subject>Potassium Channels - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Rats, Wistar</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqNkcuOFCEYhYnROO3oGxjDShemWqComwuTyXh3EmfRrglF_XQxoaGEqp7UE_maUlPtbecGQs453w8chJ5SsqWU5q9uhn6OxtstI4RtCWM85_fQhvKyyaqqye-jTRJYllcFPUOPYrwhhOakaR6iM8rymta03KAfb2cnD0Zhc5B74_bYa6wDAFbz6KO3SbnYXWPlnQI3Bjka73A3hcWqJ7A4govLoZ1xUnE_D37spb1jOpiCdxBfYziaDhICax8WYGZcBwOkxY0LfAzeLqMX6Y44miPgLy-x6qVzYONj9EBLG-HJaT9H396_211-zK6-fvh0eXGVqaKgTda1BePQcal0Q1lFy6LNqepKzignmrOiY1rzVrKqLinrQDc1rXRdEQ6VKtoyP0dvVu4wtQfo1kdbMYT0P2EWXhrxr-JML_b-KBhrSEmKBHh-AgT_fYI4ioOJCqyVDvwURcVo1aQlGflqVMHHGED_HkKJWBoWvxoWS8NibTjFnv19wT-hU6XJUK-GW2Nh_i-o2H2-5qxJ0RdrtDf7_tYEEKs5emVgnEXBuWBicf4Ed__Igg</recordid><startdate>20021015</startdate><enddate>20021015</enddate><creator>Ainscow, Edward K.</creator><creator>Mirshamsi, Shirin</creator><creator>Tang, Teresa</creator><creator>Ashford, Michael L. J.</creator><creator>Rutter, Guy A.</creator><general>The Physiological Society</general><general>Blackwell Publishing Ltd</general><general>Blackwell Science Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021015</creationdate><title>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</title><author>Ainscow, Edward K. ; Mirshamsi, Shirin ; Tang, Teresa ; Ashford, Michael L. J. ; Rutter, Guy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - physiology</topic><topic>Animals</topic><topic>Cell Membrane - metabolism</topic><topic>Cells, Cultured</topic><topic>Cerebellum - cytology</topic><topic>Cerebellum - metabolism</topic><topic>Chemoreceptor Cells - physiology</topic><topic>Cytosol - metabolism</topic><topic>Electrophysiology</topic><topic>Energy Metabolism</topic><topic>Glucose - metabolism</topic><topic>Hypothalamus - cytology</topic><topic>Hypothalamus - physiology</topic><topic>Lactates - metabolism</topic><topic>Male</topic><topic>Monocarboxylic Acid Transporters - metabolism</topic><topic>NADP - metabolism</topic><topic>Neuroglia - metabolism</topic><topic>Neurons - physiology</topic><topic>Original</topic><topic>Osmolar Concentration</topic><topic>Potassium Channels - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Rats, Wistar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainscow, Edward K.</creatorcontrib><creatorcontrib>Mirshamsi, Shirin</creatorcontrib><creatorcontrib>Tang, Teresa</creatorcontrib><creatorcontrib>Ashford, Michael L. J.</creatorcontrib><creatorcontrib>Rutter, Guy A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainscow, Edward K.</au><au>Mirshamsi, Shirin</au><au>Tang, Teresa</au><au>Ashford, Michael L. J.</au><au>Rutter, Guy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>2002-10-15</date><risdate>2002</risdate><volume>544</volume><issue>2</issue><spage>429</spage><epage>445</epage><pages>429-445</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Glucose-responsive (GR) neurons from hypothalamic nuclei are implicated in the regulation of feeding and satiety. To determine
the role of intracellular ATP in the closure of ATP-sensitive K + (K ATP ) channels in these cells and associated glia, the cytosolic ATP concentration ([ATP] c ) was monitored in vivo using adenoviral-driven expression of recombinant targeted luciferases and bioluminescence imaging. Arguing against a role
for ATP in the closure of K ATP channels in GR neurons, glucose (3 or 15 m m ) caused no detectable increase in [ATP] c , monitored with cytosolic luciferase, and only a small decrease in the concentration of ATP immediately beneath the plasma
membrane, monitored with a SNAP25âluciferase fusion protein. In contrast to hypothalamic neurons, hypothalamic glia responded
to glucose (3 and 15 m m ) with a significant increase in [ATP] c . Both neurons and glia from the cerebellum, a glucose-unresponsive region of the brain, responded robustly to 3 or 15 m m glucose with increases in [ATP] c . Further implicating an ATP-independent mechanism of K ATP channel closure in hypothalamic neurons, removal of extracellular glucose (10 m m ) suppressed the electrical activity of GR neurons in the presence of a fixed, high concentration (3 m m ) of intracellular ATP. Neurons from both brain regions responded to 5 m m lactate (but not pyruvate) with an oligomycin-sensitive increase in [ATP] c . High levels of the plasma membrane lactate-monocarboxylate transporter, MCT1, were found in both cell types, and exogenous
lactate efficiently closed K ATP channels in GR neurons. These data suggest that (1) ATP-independent intracellular signalling mechanisms lead to the stimulation
of hypothalamic neurons by glucose, and (2) these effects may be potentiated in vivo by the release of lactate from neighbouring glial cells.</abstract><cop>Oxford, UK</cop><pub>The Physiological Society</pub><pmid>12381816</pmid><doi>10.1113/jphysiol.2002.022434</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3751 |
ispartof | The Journal of physiology, 2002-10, Vol.544 (2), p.429-445 |
issn | 0022-3751 1469-7793 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2290605 |
source | NCBI_PubMed Central(免费); Wiley-Blackwell Read & Publish Collection |
subjects | Adenosine Triphosphate - metabolism Adenosine Triphosphate - physiology Animals Cell Membrane - metabolism Cells, Cultured Cerebellum - cytology Cerebellum - metabolism Chemoreceptor Cells - physiology Cytosol - metabolism Electrophysiology Energy Metabolism Glucose - metabolism Hypothalamus - cytology Hypothalamus - physiology Lactates - metabolism Male Monocarboxylic Acid Transporters - metabolism NADP - metabolism Neuroglia - metabolism Neurons - physiology Original Osmolar Concentration Potassium Channels - metabolism Rats Rats, Sprague-Dawley Rats, Wistar |
title | Dynamic imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic neurones: evidence for ATP-independent control of ATP-sensitive K+ channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20imaging%20of%20free%20cytosolic%20ATP%20concentration%20during%20fuel%20sensing%20by%20rat%20hypothalamic%20neurones:%20evidence%20for%20ATP-independent%20control%20of%20ATP-sensitive%20K+%20channels&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Ainscow,%20Edward%20K.&rft.date=2002-10-15&rft.volume=544&rft.issue=2&rft.spage=429&rft.epage=445&rft.pages=429-445&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.2002.022434&rft_dat=%3Cproquest_pubme%3E72179721%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5519-db524ed4acf9127165b31cd642140f425d2ff4ba278612def9817f8704e7c5b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=72179721&rft_id=info:pmid/12381816&rfr_iscdi=true |