Loading…

Distinct Acto/Myosin-I Structures Associate with Endocytic Profiles at the Plasma Membrane

Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D. G. Drubin. 2003. "Cell". 115:475-487). However, the nature of...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of cell biology 2008-03, Vol.180 (6), p.1219-1232
Main Authors: Idrissi, Fatima-Zahra, Grötsch, Helga, Fernández-Golbano, Isabel M., Presciatto-Baschong, Cristina, Riezman, Howard, Geli, María-Isabel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D. G. Drubin. 2003. "Cell". 115:475-487). However, the nature of the primary endocytic profile in yeast and how clathrin and actin cooperate to generate an endocytic vesicle is unknown. In this study, we analyze the distribution of nine different proteins involved in endocytic uptake along plasma membrane invaginations using immunoelectron microscopy. We find that the primary endocytic profiles are tubular invaginations of up to 50 nm in diameter and 180 nm in length, which accumulate the endocytic coat components at the tip. Interestingly, significant actin labeling is only observed on invaginations longer than 50 nm, suggesting that initial membrane bending occurs before initiation of the slow inward movement. We also find that in the longest profiles, actin and the myosin-I Myo5p form two distinct structures that might be implicated in vesicle fission.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200708060