Loading…
Signal and sensitivity enhancement through optical interference coating for DNA and protein microarray applications
Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating...
Saved in:
Published in: | Journal of biomolecular techniques 2006-04, Vol.17 (2), p.122-130 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating located beneath the functional coating (aminosilane or epoxysilane). It is designed to enhance the fluorescence in the Cy3 and Cy5 channel by increasing the light absorption of the dyes by about 6-fold and by redirecting emitted fluorescence into the detector during scanning, resulting in a theoretical limit of about 12-fold signal amplification. Two-color DNA microarray experiments conducted on the OI slides showed over 8-fold signal amplification, conservation of gene expression ratios, and increased signal-to-noise ratio when compared to control slides, indicating enhanced detection sensitivity. Protein microarray assays also exhibited over 8-fold signal amplification at three different target concentrations, demonstrating the versatility of the OI slides for different microarray applications. Further, the DNA and protein assays performed on the OI slides exhibited excellent detection sensitivity even at the low target amounts essential for diagnostic applications. The OI slides are compatible with commonly used protocols, printers, scanners and other microarray equipment. Therefore, the OI slides offer an attractive alternative to traditional microarray substrates, where enhanced detection sensitivity is desired. |
---|---|
ISSN: | 1524-0215 |