Loading…

Structural and mechanistic analysis of trichodiene synthase using site-directed mutagenesis: probing the catalytic function of tyrosine-295 and the asparagine-225/serine-229/glutamate-233-Mg2+B motif

Trichodiene synthase from Fusarium sporotrichioides contains two metal ion-binding motifs required for the cyclization of farnesyl diphosphate: the "aspartate-rich" motif D(100)DXX(D/E) that coordinates to Mg2+A and Mg2+C, and the "NSE/DTE" motif N(225)DXXSXXXE that chelates Mg2+...

Full description

Saved in:
Bibliographic Details
Published in:Archives of biochemistry and biophysics 2008-01, Vol.469 (2), p.184-194
Main Authors: Vedula, L Sangeetha, Jiang, Jiaoyang, Zakharian, Tatiana, Cane, David E, Christianson, David W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Trichodiene synthase from Fusarium sporotrichioides contains two metal ion-binding motifs required for the cyclization of farnesyl diphosphate: the "aspartate-rich" motif D(100)DXX(D/E) that coordinates to Mg2+A and Mg2+C, and the "NSE/DTE" motif N(225)DXXSXXXE that chelates Mg2+B (boldface indicates metal ion ligands). Here, we report steady-state kinetic parameters, product array analyses, and X-ray crystal structures of trichodiene synthase mutants in which the fungal NSE motif is progressively converted into a plant-like DDXXTXXXE motif, resulting in a degradation in both steady-state kinetic parameters and product specificity. Each catalytically active mutant generates a different distribution of sesquiterpene products, and three newly detected sesquiterpenes are identified. In addition, the kinetic and structural properties of the Y295F mutant of trichodiene synthase were found to be similar to those of the wild-type enzyme, thereby ruling out a proposed role for Y295 in catalysis.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2007.10.015